Rationale The early detection of primary tumours and metastatic disease is vital for successful therapy and is contingent upon highly specific molecular markers and sensitive, non-invasive imaging techniques. We hypothesized that the accumulation of activated platelets within tumours is a general phenomenon and thus represents a novel means for the molecular imaging of cancer. Here we investigate a unique single chain antibody (scFv), which specifically targets activated platelets, as a novel biotechnological tool for molecular imaging of cancer.Methods The scFvGPIIb/IIIa, which binds specifically to the activated form of the platelet integrin receptor GPIIb/IIIa present on activated platelets, was conjugated to either Cy7, 64Cu or ultrasound-enhancing microbubbles. Using the Cy7 labelled scFvGPIIb/IIIa, fluorescence imaging was performed in mice bearing four different human tumour xenograft models; SKBr3, MDA-MB-231, Ramos and HT-1080 cells. Molecular imaging via PET and ultrasound was performed using the scFvGPIIb/IIIa-64Cu and scFvGPIIb/IIIa-microbubbles, respectively, to further confirm specific targeting of scFvGPIIb/IIIa to activated platelets in the tumour stroma.Results Using scFvGPIIb/IIIa we successfully showed specific targeting of activated platelets within the microenvironment of human tumour xenografts models via three different molecular imaging modalities. The presence of platelets within the tumour microenvironment, and as such their relevance as a molecular target epitope in cancer was further confirmed via immunofluorescence of human tumour sections of various cancer types, thus validating the translational importance of our novel approach to human disease.Conclusion Our study provides proof of concept for imaging and localization of tumours by molecular targeting activated platelets. We illustrate the utility of a unique scFv as a versatile biotechnological tool which can be conjugated to various contrast agents for molecular imaging of cancer using three different imaging modalities. These findings warrant further development of this activated platelet specific scFvGPIIb/IIIa, potentially as a universal marker for cancer diagnosis and ultimately for drug delivery in an innovative theranostic approach.
The temperature and viscosity dependence of the photo-induced electron-transfer reaction between plastocyanin and cytochrome c labeled at Lys13 with Ru(4,4'-dicarboxybipyridine)(bipyridine)(2+)2 have been investigated. In these studies, a short pulse of 450 nm light was used to excite the ruthenium complex which was oxidatively quenched by the iron center of cytochrome c. The resulting Fe(II) cytochrome c was then rapidly reoxidized by plastocyanin. The reactions were investigated over a temperature range of 3.5 to 37 degrees C under low ionic strength conditions such that protein/protein complex formation was favored. The enthalpy of activation was 7 kcal mol-1 and the entropy of activation was -20 cal mol-1 K-1. Increasing the viscosity by the addition of sucrose up to 70% resulted in a 4-fold decrease in the rate constant for electron transfer. The overall results suggest a rate-limiting step that involves either dissociation of the dominant protein/protein complex or surface diffusion of the associated proteins.
This paper describes an undergraduate
biochemistry laboratory module
consisting of a set of experiments designed around a purification
scheme for bovine serum albumin (BSA). Students purify BSA from cow
plasma by a combination of salt and acetone precipitation, equilibrium
dialysis, ion exchange, and size exclusion chromatography. Students
use the bromocresol green–BSA complex assay to quantify albumin
at each step in the scheme and generate a purification table. In addition,
trace amounts of IgG’s and nucleases, the major contaminants
in BSA purification, are probed by Western blotting and DNase assay,
respectively. This module exposes students to the principles and techniques
of separation of proteins based on solubility, size, and surface charge.
In addition, students learn the concept of limit of detection of analytical
techniques such as SDS-PAGE and Western blotting. The module utilizes
two 3-h laboratory periods, with a 1-h prelab lecture per week, for
about 6 weeks. Depending on class size, groups consist of two to four
students. The module is suitable for students who have completed a
semester of biochemistry. Instructors can extend the module to advanced
level laboratory by including enzyme kinetics and protein structure–function
studies based on albumin’s pseudoesterase activity and intrinsic
tryptophan fluorescence, respectively.
Here, we report an experimental study of the effect of toxic metal ions on photosensitized singlet oxygen generation for photodegradation of PAH derivatives, Anthracene‐9,10‐dipropionic acid disodium salt (ADPA) and 1,5‐dihydroxynapthalene (DHN) and photoinactivation of Escherichia coli bacteria by using cationic meso‐tetra(N‐methyl‐4‐pyridyl)porphine tetrachloride (TMPyP) as a singlet oxygen photosensitizer. Three s‐block metals ions, such as Na+, K+ and Ca2+ and five toxic metals such as Cd2+, Cu2+, Hg2+, Zn2+ and Pb2+ were studied. The s‐block metal ions showed no change in the rate of photodegradation of ADPA or DHN by TMPyP, whereas a dramatic change in the photodegradation of ADPA and DHN was observed in the presence of toxic metals. The maximum photodegradation rate constants of ADPA and DHN were observed for Cd2+ ions [(3.91 ± 0.20) × 10−3 s−1 and (7.18 ± 0.35) × 10−4 s−1, respectively]. Strikingly, the photodegradation of ADPA and DHN was almost completely inhibited in the presence of Hg2+ ions and Cu2+ ions. A complete inhibition of growth of E. coli was observed upon visible light irradiation of E. coli solutions with TMPyP and toxic metal ions particularly, Cd2+, Hg2+, Zn2+ and Pb2+ ions, except for Cu2+ ions where a significantly slow inhibition of E. coli's growth was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.