The objective of this study was to compare the flock-level prevalence of healed keel bone fractures and to benchmark other indicators of well-being in laying hens housed in conventional cages and single-tier floor housing systems at several points during the production period. Commercial farms in Ontario, Canada, that housed hens in cages (n=9) or floor barns (n=8) were included. Flocks were beak-trimmed brown hens of various strains. Each flock was visited at 20, 35, 50, and 65 wk of age. At each visit, 50 hens were weighed, palpated for healed keel fractures, and feather scored over 4 areas of the body. Data were collected from the farm records on cumulative mortality. Keel fracture prevalence was higher in floor-housed flocks compared to cage-housed flocks (48.3±0.04% vs. 24.8±0.03%; P<0.001). The majority of keel fractures occurred by 50 wk. Cumulative mortality tended to be higher in floor-housed flocks compared to cage-housed flocks (2.13±0.42% vs. 1.29±0.19%; P=0.078). Mean BW was lower (1,827±28.8 g vs. 1,888±26.8 g; P=0.02) yet more uniform (CV of BW 9.43±0.40% vs. 10.10±0.32%; P<0.001) in floor-housed flocks compared to cage-housed flocks. Feather condition was not affected by housing system type (P=0.618), although it declined with age (P<0.001). Individual hen factors assessed using Pearson partial correlations indicated that hens with fractures were heavier at 65 wk in both housing types (P<0.05) and that heavier hens housed on the floor had better feather scores (P<0.001) from 35 wk onward. Floor-housed hens with fractures had lower feather scores at 35 wk (P<0.05) but not at 50 or 65 wk. Housing hens in single-tier floor systems increased the flock-level prevalence of keel fractures and resulted in a lower, yet more uniform, BW compared to hens in conventional cages under commercial conditions in Ontario. Benchmarking welfare indicators from alternative housing systems for laying hens is important to ensure that progress is made in improving their well-being.
A systematic review was conducted to evaluate the change in prevalence of Campylobacter on chicken carcasses during processing. A structured literature search of 8 electronic databases using the key words for "Campylobacter," "chicken," and "processing" identified 1,734 unique citations. Abstracts were screened for relevance by 2 independent reviewers. Thirty-two studies described prevalence at more than one stage during processing and were included in this review. Of the studies that described the prevalence of Campylobacter on carcasses before and after specific stages of processing, the chilling stage had the greatest number of studies (9), followed by washing (6), defeathering (4), scalding (2), and evisceration (1). Studies that sampled before and after scalding or chilling, or both, showed that the prevalence of Campylobacter generally decreased immediately after the stage (scalding: 20.0 to 40.0% decrease; chilling: 100.0% decrease to 26.6% increase). The prevalence of Campylobacter increased after defeathering (10.0 to 72.0%) and evisceration (15.0%). The prevalence after washing was inconsistent among studies (23.0% decrease to 13.3% increase). Eleven studies reported the concentration of Campylobacter, as well as, or instead of, the prevalence. Studies that sampled before and after specific stages of processing showed that the concentration of Campylobacter decreased after scalding (minimum decrease of 1.3 cfu/g, maximum decrease of 2.9 cfu/mL), evisceration (0.3 cfu/g), washing (minimum 0.3 cfu/mL, maximum 1.1 cfu/mL), and chilling (minimum 0.2 cfu/g, maximum 1.7 cfu/carcass) and increased after defeathering (minimum 0.4 cfu/g, maximum 2.9 cfu/mL). Available evidence is sparse and suggests more data are needed to understand the magnitude and mechanism by which the prevalence and concentration of Campylobacter changes during processing. This understanding should help researchers and program developers identify the most likely points in processing to implement effective control efforts. For example, if contamination will occur during defeathering and likely during evisceration, critical control points postevisceration are likely to have a greater effect on the end product going to the consumer.
High flock-level prevalence of keel-bone fractures and deviations in laying hens are commonly reported across various housing systems; however, few longitudinal studies exist, especially for furnished and conventional cage systems. Load-bearing exercise improves bone strength and mineral composition in laying hens and has the potential to reduce keel-bone damage, especially if exercise is allowed during critical periods of bone growth throughout the pullet rearing phase. The objective of this study was to determine the prevalence of keel-bone damage in laying hens housed in furnished and conventional cages, and assess whether opportunities for exercise during the pullet rearing phase influenced the prevalence of keel-bone damage throughout the laying period. Four flock replicates of 588 Lohmann Selected Leghorn-Lite pullets/flock were reared in either conventional cages (Conv) or an aviary rearing system (Avi) and placed into conventional cages (CC), 30-bird furnished cages (FC-S) or 60-bird furnished cages (FC-L) for adult housing. Keel-bone status was determined by palpation at 30, 50, and 70 wk of age. Age (P < 0.001) and rearing system (P < 0.001) had an effect on the presence of keel-bone fractures. The presence of fractures increased with age, and hens raised in the Avi system had a lower percentage of fractures (41.6% ± 2.8 SE) compared to hens reared in the Conv system (60.3% ± 2.9 SE). Adult housing system did not have an effect on the percentage of keel fractures (P = 0.223). Age had an effect on the presence of deviations (P < 0.001), with deviations increasing with age. Rearing system (P = 0.218) and adult housing system (P = 0.539) did not affect the presence of deviations. Keel fractures and deviations were strongly associated with each other at all ages: 30 wk: (P < 0.001); 50 wk: (P < 0.001); and 70 wk: (P < 0.001). Increased opportunities for exercise provided by an aviary rearing system reduced the prevalence of keel-bone fractures through the end-of-lay.
Increased load-bearing exercise improves bone quality characteristics in a variety of species, including laying hens. Providing increased opportunities for exercise during the pullet rearing phase, a period of substantial musculoskeletal growth, offers a proactive approach to reducing osteoporosis by improving bone composition. The main objective of this study was to determine whether differing opportunities for exercise during rearing influences pullet musculoskeletal characteristics. Two flock replicates of 588 Lohmann Selected Leghorn-Lite pullets were reared in either standard, conventional cages (Conv) or an aviary rearing system (Avi) from day-old chicks until 16 wk of age. The keel bone and the muscles and long bones of the wings and legs were collected at 16 wk to measure muscle growth differences between rearing treatments and quantify bone quality characteristics using quantitative computed tomography (QCT) and bone breaking strength (BBS) assessment. Keel bone characteristics and muscle weights were adjusted for BW and analyses for QCT and BBS included BW as a covariate. At 16 wk of age, rearing system had an effect on the majority of keel bone characteristics (P < 0.05). The length of the keel metasternum, caudal tip cartilage length, and the overall percentage of cartilage present on the keel at 16 wk was greater in the Avi pullets compared to the Conv pullets (P < 0.01). Wing and breast muscle weights of the Avi pullets were greater than the Conv pullets (P < 0.001), but leg muscle weights were greater in the Conv pullets (P = 0.026). Avi pullets had greater total bone density, total cross-sectional area, cortical cross-sectional area, total bone mineral content, and cortical bone mineral content than Conv pullets for the radius, humerus, and tibia (P < 0.001). Avi pullets had greater BBS compared to the Conv pullets for the radius, humerus, and tibia (P < 0.01). Increased opportunities for exercise offered by the aviary rearing system increased muscle and bone growth characteristics in pullets at 16 wk of age.
Broiler breeders have impaired reproductive performance when fed to satiety but they can achieve an optimal hatching egg production under feed restriction. Feed restriction is a welfare concern due to signs of hunger, lack of satiety, and frustrated feeding motivation. The objective of this research was to examine the effect of a rationed alternative diet and non-daily feeding schedules on the performance and welfare of broiler breeder pullets reared under simulated commercial conditions. At 3 wk of age, 1,680 Ross 308 pullets were allocated to 24 pens fed with 1 of 4 treatments: 1) daily control diet (control); 2) daily alternative diet (40% soybean hulls and 1 to 5% calcium propionate); 3) 4/3 control diet (4 on-feed days per week; 3 non-consecutive off-feed days per week); and 4) graduated control diet (feeding frequency varied with age). Body weight and body weight uniformity were recorded at 3, 5, 7, 11, 17, and 21 wk of age. Pullets were scored for feather coverage, foot lesions, and hock burns biweekly. Physiological indicators (plasma glucose, corticosterone, hematology, and feather traits) and feeding motivation were also determined throughout rearing during on- and off-feed days. Data were analyzed using a linear mixed regression model, with pen nested in the model and age as a repeated measure. Compared to control, pullets under the 3 alternative feeding strategies had a lower feeding motivation during early rearing ( P = 0.03), better feather coverage throughout rearing ( P = 0.001), fewer feather fault bars ( P = 0.006), and a delayed increase in the basophil to lymphocyte ratio ( P = 0.001). These results indicate that the 3 alternative feeding strategies (the alternative, the graduated, and the 4/3 schedule) may decrease feeding motivation and alleviate stress compared to the control, suggesting an overall improvement in broiler breeder welfare without negative consequences on their performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.