Keel bone damage (KBD) is a critical issue facing the laying hen industry today as a result of the likely pain leading to compromised welfare and the potential for reduced productivity. Recent reports suggest that damage, while highly variable and likely dependent on a host of factors, extends to all systems (including battery cages, furnished cages, and non-cage systems), genetic lines, and management styles. Despite the extent of the problem, the research community remains uncertain as to the causes and influencing factors of KBD. Although progress has been made investigating these factors, the overall effort is hindered by several issues related to the assessment of KBD, including quality and variation in the methods used between research groups. These issues prevent effective comparison of studies, as well as difficulties in identifying the presence of damage leading to poor accuracy and reliability. The current manuscript seeks to resolve these issues by offering precise definitions for types of KBD, reviewing methods for assessment, and providing recommendations that can improve the accuracy and reliability of those assessments.
This article reviews current knowledge about welfare implications of keel bone damage in laying hens. As an initial part, we shortly describe the different conditions and present major risk factors as well as findings on the prevalence of the conditions. Keel bone damage is found in all types of commercial production, however with varying prevalence across systems, countries, and age of the hens. In general, the understanding of animal welfare is influenced by value-based ideas about what is important or desirable for animals to have a good life. This review covers different types of welfare indicators, including measures of affective states, basic health, and functioning as well as natural living of the birds, thereby including the typical public welfare concerns. Laying hens with keel bone fractures show marked behavioral differences in highly motivated behavior, such as perching, nest use, and locomotion, indicating reduced mobility and potentially negative affective states. It remains unclear whether keel bone fractures affect hen mortality, but there seem to be relations between the fractures and other clinical indicators of reduced welfare. Evidence of several types showing pain involvement in fractured keel bones has been published, strongly suggesting that fractures are a source of pain, at least for weeks after the occurrence. In addition, negative effects of fractures have been found in egg production. Irrespective of the underlying welfare concern, available scientific evidence showed that keel bone fractures reduce the welfare of layers in modern production systems. Due to the limited research into the welfare implications of keel bone deviation, evidence of the consequences of this condition is not as comprehensive and clear. However, indications have been found that keel bone deviations have a negative impact on the welfare of laying hens. In order to reduce the occurrence of the conditions as well as to examine how the affected birds should be treated, more research into the welfare implications of keel bone damage is needed. Research should focus on effects of genetic lines, genetic selection, housing, and nutrition for the development, prevalence, and severity of these conditions, preferably conducted as longitudinal and/or transnational studies.
High flock-level prevalence of keel-bone fractures and deviations in laying hens are commonly reported across various housing systems; however, few longitudinal studies exist, especially for furnished and conventional cage systems. Load-bearing exercise improves bone strength and mineral composition in laying hens and has the potential to reduce keel-bone damage, especially if exercise is allowed during critical periods of bone growth throughout the pullet rearing phase. The objective of this study was to determine the prevalence of keel-bone damage in laying hens housed in furnished and conventional cages, and assess whether opportunities for exercise during the pullet rearing phase influenced the prevalence of keel-bone damage throughout the laying period. Four flock replicates of 588 Lohmann Selected Leghorn-Lite pullets/flock were reared in either conventional cages (Conv) or an aviary rearing system (Avi) and placed into conventional cages (CC), 30-bird furnished cages (FC-S) or 60-bird furnished cages (FC-L) for adult housing. Keel-bone status was determined by palpation at 30, 50, and 70 wk of age. Age (P < 0.001) and rearing system (P < 0.001) had an effect on the presence of keel-bone fractures. The presence of fractures increased with age, and hens raised in the Avi system had a lower percentage of fractures (41.6% ± 2.8 SE) compared to hens reared in the Conv system (60.3% ± 2.9 SE). Adult housing system did not have an effect on the percentage of keel fractures (P = 0.223). Age had an effect on the presence of deviations (P < 0.001), with deviations increasing with age. Rearing system (P = 0.218) and adult housing system (P = 0.539) did not affect the presence of deviations. Keel fractures and deviations were strongly associated with each other at all ages: 30 wk: (P < 0.001); 50 wk: (P < 0.001); and 70 wk: (P < 0.001). Increased opportunities for exercise provided by an aviary rearing system reduced the prevalence of keel-bone fractures through the end-of-lay.
Increased load-bearing exercise improves bone quality characteristics in a variety of species, including laying hens. Providing increased opportunities for exercise during the pullet rearing phase, a period of substantial musculoskeletal growth, offers a proactive approach to reducing osteoporosis by improving bone composition. The main objective of this study was to determine whether differing opportunities for exercise during rearing influences pullet musculoskeletal characteristics. Two flock replicates of 588 Lohmann Selected Leghorn-Lite pullets were reared in either standard, conventional cages (Conv) or an aviary rearing system (Avi) from day-old chicks until 16 wk of age. The keel bone and the muscles and long bones of the wings and legs were collected at 16 wk to measure muscle growth differences between rearing treatments and quantify bone quality characteristics using quantitative computed tomography (QCT) and bone breaking strength (BBS) assessment. Keel bone characteristics and muscle weights were adjusted for BW and analyses for QCT and BBS included BW as a covariate. At 16 wk of age, rearing system had an effect on the majority of keel bone characteristics (P < 0.05). The length of the keel metasternum, caudal tip cartilage length, and the overall percentage of cartilage present on the keel at 16 wk was greater in the Avi pullets compared to the Conv pullets (P < 0.01). Wing and breast muscle weights of the Avi pullets were greater than the Conv pullets (P < 0.001), but leg muscle weights were greater in the Conv pullets (P = 0.026). Avi pullets had greater total bone density, total cross-sectional area, cortical cross-sectional area, total bone mineral content, and cortical bone mineral content than Conv pullets for the radius, humerus, and tibia (P < 0.001). Avi pullets had greater BBS compared to the Conv pullets for the radius, humerus, and tibia (P < 0.01). Increased opportunities for exercise offered by the aviary rearing system increased muscle and bone growth characteristics in pullets at 16 wk of age.
The objective of this study was to determine the effectiveness of a nonpenetrating captive bolt (NPCB), the Zephyr-Euthanasia (Zephyr-E), for euthanasia of neonatal piglets<72 h of age using signs of insensibility and death, as well as postmortem assessment of traumatic brain injury (TBI). The Zephyr-E was used by 10 stock people to euthanize 100 low viability neonatal piglets from 3 commercial farrowing units and 1 research farm. Brainstem reflexes, convulsions, and heartbeat were used to assess insensibility, time of brain death, and cardiac arrest after Zephyr-E application. Hemorrhage severity and skull fracture displacement (FD) were quantified from computed tomography scans (n=10), macroscopic scoring was used to assess brain hemorrhage and skull fracture (SK) severity (n=100), and microscopic scoring was used to assess subdural (SDH) and parenchymal (PH) hemorrhage within specific brain regions that are responsible for consciousness and vital function (n=10). All 100 piglets were rendered immediately insensible without return to sensibility. On average, clonic convulsions (CC) ceased in 101 s (±7.4 SE), brain death was achieved in 229 s (±9.18 SE), and cardiac arrest occurred in 420 s (±13.57 SE). Time of cardiac arrest differed significantly among stock people when either body weight (BW: P=0.0053) or body mass index (BMI: P=0.0059) was used as a covariate. The BMI was inversely related to the duration of CC (P=0.0227). Moderate to severe hemorrhage severity was reported in 9 of 10 piglets. There was no relationship between FD and BW (P=0.8408) or BMI (P=0.6439). Macroscopic analyses indicated moderate to severe hemorrhage and SK in all piglets. No differences were found among brain sections for SDH (P=0.2302); PH was greater in the cerebral cortex than in the midbrain and brainstem (P=0.0328). The Zephyr-E NPCB reliably caused immediate, sustained insensibility followed by death in neonatal piglets. Postmortem assessment confirmed that application of the Zephyr-E caused widespread, irreversible brain damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.