Large scale deployments of general cache networks, such as Content Delivery Networks or Information Centric Networking architectures, arise new challenges regarding their performance evaluation for network planning. On the one hand, analytical models can hardly represent in details all the interactions of complex replacement, replication, and routing policies on arbitrary topologies. On the other hand, the sheer size of networks and content catalogs makes event-driven simulation techniques inherently non-scalable. We propose a new technique for the performance evaluation of large-scale caching systems that intelligently integrates elements of stochastic analysis within a MonteCarlo simulative approach, that we colloquially refer to as ModelGraft. Our approach (i) leverages the intuition that complex scenarios can be mapped to a simpler equivalent scenario that builds upon Time-To-Live (TTL) caches; it (ii) significantly downscales the scenario to lower computation and memory complexity, while, at the same time, preserving its properties to limit accuracy loss; finally, it (iii) is simple to use and robust, as it autonomously converges to a consistent state through a feedback-loop control system, regardless of the initial state. Performance evaluation shows that, with respect to classic event-driven simulation, ModelGraft gains over two orders of magnitude in both CPU time and memory complexity, while limiting accuracy loss below 2%. In addition, we show that ModelGraft extends performance evaluation well beyond the boundaries of classic approaches, by enabling study of Internetscale scenarios with content catalogs comprising hundreds of billions objects.
The lack of scalable routing algorithms is one of the main obstacles that slow down a large deployment of Content Centric Networking on an Internet-scale. From one side, content based networking promises to solve the current problems of the Internet. On the other hand, instead, it requires routers to account for a very huge amount of content names. Bloom Filters are widely recognized as a possible solution to this limitation. At the same time, their adoption requires careful tuning rules and novel design methodologies. In this perspective, the present contribution proposes a Bloom Filter-based routing scheme for Content Centric Networking (CCN) and shows several preliminary observations about Bloom Filters size and signaling overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.