The aim of this study was to determine the effect of spinal manipulation therapy (SMT) force magnitude and force duration on the spinal stiffness of a feline preparation. A mechanical device performed simulated SMTs at the L6 spinous process in 22 anesthetised felines. Subjects were divided into four groups. Two groups (no preload, preload) received SMT having maximal displacements of 1.0mm, 2.0mm and 3.0mm of total displacement (displacement control). In two other groups (preload, no preload), SMTs were applied with maximal loads of 25%, 55% and 85% body weight (force control). Each of the SMTs were applied in order of increasing displacement or force amplitudes, at increasing durations ranging from 25 to 250 ms. Spinal stiffness was quantified by applying an indentation load to external surface of the back. Linear mixed effects models were fit for post-SMT stiffness variables. When SMT was applied under displacement control with and without a preceding preload, a significant interactive effect occurred between force magnitude and force duration (p≤0.05) for some of the stiffness variables. The findings from this experiment demonstrate that spinal stiffness in a feline model was affected by the interaction of the force amplitude and force duration parameters but the exact nature of this interaction remains unclear. This study provides guidance for further investigation given other SMT parameters not tested here may facilitate the ability of SMT to alter spinal stiffness.
Objective Spinal manipulation therapy (SMT), an intervention used to treat low back pain, has been demonstrated to affect the stiffness of the spine. To adequately quantify the effects of SMT on stiffness, a device capable of applying specific parameters of manipulation in addition to measuring force-displacement values has been developed previously. Previously developed indentation techniques that quantify stiffness have been modified for novel use in evaluating SMT parameters. The reliability of stiffness measurements performed by the newly adapted device was assessed in this study. Methods Seven springs of varying stiffness were each indented 10 times by a Variable Rate Force/Displacement (VRFD) device. Indentations were performed at a rate of 0.5mm/s to a maximal displacement of 4 mm. The stiffness coefficients for a middle portion of the resulting force-displacement graph and the terminal instantaneous stiffness (stiffness at end displacement) were calculated. The intra class correlation and confidence interval were calculated for these stiffness measurements to assess device reliability. Results Repeated spring stiffness measures yielded an ICC value of 1.0. The mean stiffness values had narrow 95% confidence intervals ranging from 0.01 N/mm to 0.06 N/mm and small coefficients of variation. Conclusion This VRFD device provides highly reliable stiffness measurements in controlled conditions. Although in vivo reliability remains to be established, the results of this study support the use of the VRFD device in future trials investigating the impact of SMT various parameters on spinal stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.