BackgroundThe product of the retinoblastoma-susceptibility gene (pRb) is a substrate for Protein Phosphatase 1 (PP1). At mitotic exit, all three PP1 isoforms, α, γ1 and δ, bind to pRb and dephosphorylate its Ser/Thr sites in a sequential and site-specific way. The pRb-C terminal has been reported to be necessary and sufficient for PP1α binding. The present study investigated whether the three PP1 isoforms from mitotic or asynchronous HeLa cells associate differentially with wild-type and pRb mutants, as well as the holoenzyme composition of the pRb-directed PP1.ResultsThe requirement for the entire pRb molecule to achieve optimal PP1-binding was indicated by the fact that full-length pRb displayed the highest affinity for all three PP1 isoforms. Ser/Thr-to-Ala substitution for up to 14 pRb sites did not affect the ability of pRb to bind the PP1 isoforms derived from mitotic or asynchronous HeLa cells, thus suggesting that the phosphate-accepting residues on pRb do not regulate the interaction with PP1. To probe for the presence of PP1 targeting subunits in the pRb-directed PP1 complex, PP1 from mitotic or asynchronous HeLa cells was isolated by affinity chromatography on GST-Rb (either full-length or its deletion mutants Rb-big pocket or Rb-C-terminal). The PP1 was always obtained as free catalytic subunit, displaying all three isoforms, thus suggesting direct interaction between pRb and PP1. The direct association was confirmed by the ability of pRb to pull-down purified PP1 catalytic subunits and by in vitro reconstitution of a complex between PP1 catalytic subunit and the pRb-C-terminal.ConclusionThe work indicated that the full length of the pRb molecule is required for optimal interaction with the PP1 isoforms and that the association between pRb and PP1 isoforms is direct.
Protein phosphatase 1delta (PP1delta) localizes to focal adhesions and associates with the focal adhesion kinase (FAK). In the present work we used deletion mutants of PP1delta and FAK to detect their reciprocally interacting domains. Dissection of PP1delta indicated 194-260 as the shortest FAK-interacting domain among those tested. Domain 194-260 encompasses several sites involved in catalysis, indirectly confirming that FAK is a PP1 substrate. Mutation of one of these sites, R220 (R220S or R220Q), did not abolish but on the contrary increased the ability of 194-260 to pull-down FAK. Such property might be exploited to detect new potential PP1 substrates. Among the FAK deletion mutants, only the C-terminal domain (684-1053, also known as FRNK) pulled-down a significant amount of PP1. The PP1 eluted from a GST-FRNK affinity column displayed Mr of 35,000 when analyzed by gel-filtration on FPLC Superose 12, indicating the presence of an isolated PP1 catalytic subunit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.