The peri-menopause or menopausal transition—the time period that surrounds the final years of a woman’s reproductive life—is associated with profound reproductive and hormonal changes in a woman’s body and exponentially increases a woman’s risk of cerebral ischemia and Alzheimer’s disease. Although our understanding of the exact timeline or definition of peri-menopause is limited, it is clear that there are two stages to the peri-menopause. These are the early menopausal transition, where menstrual cycles are mostly regular, with relatively few interruptions, and the late transition, where amenorrhea becomes more prolonged and lasts for at least 60 days, up to the final menstrual period. Emerging evidence is showing that peri-menopause is pro-inflammatory and disrupts estrogen-regulated neurological systems. Estrogen is a master regulator that functions through a network of estrogen receptors subtypes alpha (ER-α) and beta (ER-β). Estrogen receptor-beta has been shown to regulate a key component of the innate immune response known as the inflammasome, and it also is involved in regulation of neuronal mitochondrial function. This review will present an overview of the menopausal transition as an inflammatory event, with associated systemic and central nervous system inflammation, plus regulation of the innate immune response by ER-β-mediated mechanisms.
CD8+ T cells infiltrate brains with human immunodeficiency virus type-1 (HIV-1) encephalitis (HIVE) and related animal models; their perineuronal localization suggests cytotoxic T cell (CTL)-mediated neuronal killing. Because CTLs have not been identified in acquired immunodeficiency syndrome (AIDS) brains, the authors identified their cytotoxic granules in autopsy AIDS brains with HIVE and without HIVE (HIVnE) plus controls (7 to 13 cases/group) and determined gene expression profiles of CTL-associated genes in a separate series of cases. CD3+ and CD8+ T cells were significantly increased (P < .01) in perivascular spaces and inflammatory nodules in HIVE but were rare or absent in brain parenchyma in HIVnE and control brains. Eight HIVE brains contained granzyme B+ T cells and five contained perforin+ T cells. Their T-cell origin was confirmed by colocalization of CD8 and granzyme B in the same cell and the absence of CD56+ natural killer cells. The CTLs directly contacted with neurons, as the authors showed previously for CD3+ and CD8+ T cells. CTLs were rare or absent in HIV nonencephalitis (HIVnE) and controls. Granzyme B and H precursor gene expression was up-regulated and interleukin (IL)-12A precursor, a maturation factor for natural killer cells and CTLs, was down-regulated in HIVE versus HIVnE brain. This study demonstrates, for the first time, CTLs in HIVE and shows that parenchymal T cells and CTLs are sensitive biomarkers for HIVE. Consequently, CD8+ T cells and CTLs could mediate brain injury in HIVE and may represent an important biomarker for productive brain infection by HIV-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.