Most tropical forests outside protected areas have been or will be selectively logged so it is essential to maximize the conservation values of partially harvested areas. Here we examine the extent to which these forests sustain timber production, retain species, and conserve carbon stocks. We then describe some improvements in tropical forestry and how their implementation can be promoted.A simple meta-analysis based on >100 publications revealed substantial variability but that: timber yields decline by about 46% after the first harvest but are subsequently sustained at that level; 76% of carbon is retained in once-logged forests; and, 85-100% of species of mammals, birds, invertebrates, and plants remain after logging. Timber stocks will not regain primary-forest levels within current harvest cycles, but yields increase if collateral damage is reduced and silvicultural treatments are applied.Given that selectively logged forests retain substantial biodiversity, carbon, and timber stocks, this "middle way" between deforestation and total protection deserves more attention from researchers, conservation organizations, and policy-makers. Improvements in forest management are now likely if synergies are enhanced among initiatives to retain forest carbon stocks (REDD+), assure the legality of forest products, certify responsible management, and devolve control over forests to empowered local communities.
As forest fragmentation and intentional burning of grasslands increase, the frequency of fires penetrating the dry and subhumid tropical forests of Bolivia is also likely to increase. To expand our understanding of the role of fire in tropical dry forest, the physical and thermal properties of barks of tree species were studied to determine their relative resistances to cambial damage by fire. For 16 tree species found in the dry forest of the Lomerío region of eastern Bolivia, bark thickness, moisture content, and specific gravity were measured. Insulating capabilities of bark were measured by obtaining cambial and surface temperatures during experimental wick fires. Bark thickness on trees 5-100 cm dbh (diameter at 1.4 m) ranged from 2–51 mm and both thick- and thin-barked species were represented. For all species, bark thickness increased as stem diameter increased. Bark thickness explained more (63%) of the variation in peak cambial temperatures during fires than did bark moisture content (4%) or specific gravity (1%). A threshold bark thickness of 18 mm was associated with the ability to withstand lethal cambial temperatures during the experimental, low intensity fires. For 13 of the 16 species included in this study, trees ≤20 cm dbh have bark thickness below the threshold 18 mm and, therefore, are likely to experience cambial injury from low intensity fires. Our results suggest that the forest presently characteristic of the Lomerío region did not develop with frequent fires and that species composition is likely to be substantially affected by an increase in fire frequency.
Using reduced-impact timber-harvesting practices in legally logged tropical forests would reduce global carbon emissions by 0.16 Gt/year at a modest cost and with little risk of "leakage" (increased carbon emissions elsewhere).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.