To regulate mammalian water homeostasis, arginine-vasopressin (AVP) induces phosphorylation and thereby redistribution of renal aquaporin-2 (AQP2) water channels from vesicles to the apical membrane. Vice versa, AVP (or forskolin) removal and hormones activating PKC cause AQP2 internalization, but the mechanism is unknown. Here, we show that a fraction of AQP2 is modified with two to three ubiquitin moieties in vitro and in vivo. Mutagenesis revealed that AQP2 is ubiquitinated with one K63-linked chain at K270 only. In Madin-Darby canine kidney cells, AQP2 ubiquitination occurs preferentially when present in the apical membrane, is transiently increased with forskolin removal or PKC activation, and precedes its internalization. Internalization kinetics assays with wild type (wt) and ubiquitination-deficient (K270R) AQP2 revealed that ubiquitination enhances AQP2 endocytosis. Electron microscopy showed that a translational fusion of AQP2 with ubiquitin (AQP2-Ub) localized particularly to internal vesicles of multivesicular bodies (MVBs), whereas AQP2-K270R largely localized to the apical membrane, early endosomes, and the limiting membrane of MVBs. Consistent with this distribution pattern, lysosomal degradation was extensive for AQP2-Ub, low for AQP2-K270R, and intermediate for wt-AQP2. Our data show that short-chain ubiquitination is involved in the regulated endocytosis, MVB sorting, and degradation of AQP2 and may be the mechanism used by AVP removal and PKC-activating hormones to reduce renal water reabsorption. Moreover, because several other channels are also (short-chain) ubiquitinated, our data suggest that ubiquitination may be a general mediator for the regulated endocytosis and degradation of channels in higher eukaryotes.homeostasis ͉ internalization ͉ signal transduction ͉ sorting ͉ transmembrane protein A quaporin (AQP) water channels are important for rapid and selective osmotic water transport across cell membranes. Most AQPs have a constitutive open pore, and regulation of transmembrane water transport is thus controlled by channel insertion into and retrieval from the cell surface (1-3). AQP2 is one of the best-characterized AQPs and confers water permeability to the kidney-collecting duct to serve body water homeostasis. This process is of pathophysiological importance, because inadequate cell-surface expression of AQP2 results in nephrogenic diabetes insipidus (4, 5), whereas increased cell surface expression and excessive water reabsorption is observed in congestive heart failure, preecclampsia, and the syndrome of inappropriate release of the hormone arginine-vasopressin (AVP) (6).Hypernatremia and hypovolemia induce the release of AVP, which regulates the cell-surface expression of AQP2. AVP occupation of its renal type 2 receptors initiates a signaling cascade resulting in phosphorylation of AQP2 at S256. Phosphorylation of AQP2 is necessary for the fusion of AQP2-containing vesicles with the apical membrane, where AQP2 facilitates water reabsorption (2, 7-11). Moreover, AVP also regulate...
To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, prourinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease.
Vasopressin-induced water reabsorption coincides with phosphorylation of aquaporin-2 (AQP2) at S256 (pS256), dephosphorylation at S261, and its translocation to the apical membrane, whereas treatment with the phorbol ester 12-tetradecanoylphorbol-13-acetate (TPA) induces AQP2 ubiquitination at K270, its internalization, and lysosomal degradation. In this study we investigated the relationship between S256 and S261 phosphorylation in AQP2 and its ubiquitination and trafficking in MDCK cells. Forskolin stimulation associated with increased pS256 and decreased pS261 AQP2, indicating that MDCK cells are a good model. After forskolin stimulation, TPA-induced ubiquitination of AQP2 preceded phosphorylation of AQP2 at S261, which in the first instance occurred predominantly on ubiquitinated AQP2. Forskolin-induced changes in pS261 were also observed for AQP2-S256A and AQP2-S256D, which constitutively localize in vesicles and the apical membrane, respectively. Although pS261 varies with forskolin as with wild-type AQP2, AQP2-S256A is not increased in its ubiquitination. Our data reveal that pS261 occurred independently of AQP2 localization and suggest that pS261 follows ubiquitination and endocytosis and may stabilize AQP2 ubiquitination and intracellular localization. The absence of increased ubiquitination of AQP2-S256A indicates that its intracellular location is due to the lack of pS256. Furthermore, AQP2-S261A and AQP2-S261D localized to vesicles, which was due to their increased ubiquitination, because changing K270 into Arg in both mutants resulted in their localization in the apical membrane. Although still increased in its ubiquitination, AQP2-S256D-S261D localized in the apical membrane. AQP2-S256D-K270R-Ub, however, localized to intracellular vesicles. Although our localization of AQP2-S261A/D is different from that of others, these data indicate that constitutive S256 phosphorylation counterbalances S261D-induced ubiquitination and internalization or changes its structure to allow distribution to the apical membrane. The vesicular localization of AQP2-S256D-K270R-Ub, however, indicates that the dominant apical sorting of S256D can again be overruled by constitutive ubiquitination. These data indicate that the membrane localization of AQP2 is determined by the balance of the extents of phosphorylation and ubiquitination.
Vasopressin binding to the V2 receptor in renal principal cells leads to activation of protein kinase A, phosphorylation of aquaporin 2 (AQP2) at Ser256, and the translocation of AQP2 to the apical membrane, resulting in concentration of the urine. In contrast, phorbol ester-induced activation of protein kinase C pathway leads to ubiquitination of AQP2 at Lys270 and its internalization to multivesicular bodies, where it is targeted for lysosomal degradation or stored for recycling. Because little is known about the regulation of AQP2 trafficking, we used the carboxy-terminal tail of constitutively nonphosphorylated AQP2 (S256A) as a bait for interacting proteins in a yeast two-hybrid assay. We isolated lysosomal trafficking regulatorinteracting protein 5 (LIP5) and found that LIP5 interacted with the proximal carboxy-terminal tail (L230-D243) of AQP2 in vitro but not with AQP3 or AQP4, which are also expressed in principal cells. Immunohistochemistry revealed that LIP5 co-localized with AQP2 in principal cells. LIP5 binding occurred independent of the state of Ser256 phosphorylation or Lys270 ubiquitination. LIP5 has been shown to facilitate degradation of the EGF receptor; here, LIP5 seemed to bind this receptor. Knockdown of LIP5 in mouse renal cells (mpkCCD) reduced the phorbol ester-induced degradation of AQP2 approximately two-fold. In summary, LIP5 binds cargo proteins and, considering the role of LIP5 in protein sorting to multivesicular bodies, plays a role in the degradation of AQP2, possibly by reducing the formation of late endosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.