EPIC-μCT was used to quantitatively assess joint degeneration in two distinct preclinical models. The MMT model showed similar features to human Osteoarthritis (OA), including localized lesion formation and PG loss, while the MIA model displayed extensive cartilage degeneration throughout the joint. EPIC-μCT imaging provides a rapid and quantitative screening tool for preclinical evaluation of OA therapeutics.
Lck, one of eight members of the Src family of tyrosine kinases, is activated after T cell stimulation and is required for T-cell proliferation and interleukin (IL)-2 production. Inhibition of Lck has been a target to prevent lymphocyte activation and acute rejection. Here, we report the pharmacologic characterization of 1-methyl-1H-indole-2-carboxylic acid, an orally bioavailable pyrazolo [3,4-d]pyrimidine with increased selectivity for Lck compared with previously reported compounds.
This study demonstrated that EPIC-μCT has high sensitivity to provide 3D structural and compositional measurements of cartilage and bone in the joint. EPIC-μCT can be used in combination with histology to provide a comprehensive analysis to screen new potential therapies.
Peroxidase isoenzymes may be separated on acrylamide gels and then detected by supplying the substrate in an appropriate reaction system. One such system frequently used contains guaiacol as the hydrogen donor, although this compound has certain drawbacks. Ways of circumventing these drawbacks are suggested, so that quantitative estimates of the activity of individual peroxidase isoenzymes may be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.