First generation EGFR TKIs (gefitinib, erlotinib) provide significant clinical benefit for NSCLC cancer patients with oncogenic EGFR mutations. Ultimately, these patients' disease progresses, often driven by a second-site mutation in the EGFR kinase domain (T790M). Another liability of the first generation drugs is severe adverse events driven by inhibition of WT EGFR. As such, our goal was to develop a highly potent irreversible inhibitor with the largest selectivity ratio between the drug-resistant double mutants (L858R/T790M, Del/T790M) and WT EGFR. A unique approach to develop covalent inhibitors, optimization of reversible binding affinity, served as a cornerstone of this effort. PF-06459988 was discovered as a novel, third generation irreversible inhibitor, which demonstrates (i) high potency and specificity to the T790M-containing double mutant EGFRs, (ii) minimal intrinsic chemical reactivity of the electrophilic warhead, (iii) greatly reduced proteome reactivity relative to earlier irreversible EGFR inhibitors, and (iv) minimal activity against WT EGFR.
Mutant epidermal growth factor receptor (EGFR) is a major driver of non-small-cell lung cancer (NSCLC). Marketed first generation inhibitors, such as erlotinib, effect a transient beneficial response in EGFR mutant NSCLC patients before resistance mechanisms render these inhibitors ineffective. Secondary oncogenic EGFR mutations account for approximately 50% of relapses, the most common being the gatekeeper T790M substitution that renders existing therapies ineffective. The discovery of PF-06459988 (1), an irreversible pyrrolopyrimidine inhibitor of EGFR T790M mutants, was recently disclosed.1 Herein, we describe our continued efforts to achieve potency across EGFR oncogenic mutations and improved kinome selectivity, resulting in the discovery of clinical candidate PF-06747775 (21), which provides potent EGFR activity against the four common mutants (exon 19 deletion (Del), L858R, and double mutants T790M/L858R and T790M/Del), selectivity over wild-type EGFR, and desirable ADME properties. Compound 21 is currently being evaluated in phase-I clinical trials of mutant EGFR driven NSCLC.
PPAR-γ agonists have been associated with heart failure (HF) in diabetic patients. These incidences have been reported mostly in patient populations who were at high risk for HF or had pre-existing impaired cardiovascular function. However, whether there are similar effects of these agents in subjects with no or reduced cardiovascular pathophysiology is not clear. In this study, the effects of chronic treatment with PD168, a potent peroxisome proliferator activated receptor (PPAR) subtype-γ agonist with weak activity at PPAR-α, and rosiglitazone (RGZ), a less potent PPAR-γ agonist with no PPAR-α activity, were evaluated on the cardiovascular-renal system in healthy male Sprague-Dawley (SD) rats by serial echocardiography and radiotelemetry. Rats were treated with vehicle (VEH), PD168, @ 10 or 50 mg/kg·bw/day (PD-10 or PD-50, resp.) or RGZ @ 180 mg/kg·bw/day for 28 days (n = 10/group). Relative to VEH, RGZ, and both doses of PD168 resulted in a significant fall in blood pressure. Furthermore, RGZ and PD168 increased plasma volume (% increase from baseline) 18%, 22%, and 48% for RGZ, PD-10, and PD-50, respectively. PD168 and RGZ significantly increased urinary aldosterone excretion and heart-to-body weight ratio relative to VEH. In addition, PD168 significantly decreased (10–16%) cardiac ejection fraction (EF) and increased left ventricular area (LVA) in systole (s) and diastole (d) in PD-10 and -50 rats. RGZ significantly increased LVAd; however, it did not affect EF relative to VEH. In conclusion, chronic PPAR-γ therapy may predispose the cardiorenal system to a potential sequela of structural and/or functional changes that may be deleterious with regard to morbidity and mortality.
Enzalutamide and apalutamide are two androgen receptor inhibitors approved for the treatment of castrationresistant prostate cancer (CRPC) and nonmetastatic castrationresistant prostate cancer (nmCRPC), respectively. Apalutamide is associated with an increased incidence of skin rash above the placebo groups in the SPARTAN trial in nmCRPC and in the TITAN trial in metastatic castration-sensitive prostate cancer patients. On the contrary, the rate of skin rash across all clinical trials (including PROSPER [nmCRPC]) for enzalutamide is similar to the placebo. We hypothesized that the apalutamideassociated increased skin rash in patients could be linked to a structural difference. The 2-cyanophenyl and dimethyl moieties in enzalutamide are substituted in apalutamide with 2-cyanopyridine and cyclobutyl, respectively. In our evaluations, the 2-cyanopyridine moiety of apalutamide was chemically reactive with the thiol nucleophile glutathione, resulting in rearranged thiazoline products. Radiolabeled apalutamide, but not radiolabeled enzalutamide, was shown to react with mouse and human plasma proteins. Thiol nucleophiles decreased the extent of covalent binding to the model protein bovine serum albumin, whereas amine and alcohol nucleophiles had no effect, suggesting reactivity with cysteine of proteins. Subcutaneous administration of apalutamide dose dependently increased lymphocyte cellularity in draining lymph nodes in a mouse drug allergy model (MDAM). Enzalutamide, and its known analogue RD162 in which the cyanophenyl was retained but the dimethyl was replaced by cyclobutyl, demonstrated substantially less covalent binding activity and negative results in the MDAM assay. Collectively, these data support the hypothesis that the 2-cyanopyridine moiety in apalutamide may react with cysteine in proteins forming haptens, which may trigger an immune response, as indicated by the activity of apalutamide in the MDAM assay, which in turn may be leading to increased potential for skin rash versus placebo in patients in the SPARTAN and TITAN clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.