Elucidation of mechanisms regulating intracellular calcium levels in steroidogenic tissues is important for understanding control of cellular function. We have previously described FSH receptor-mediated flux of 45Ca++ into cultured rat Sertoli cells and receptor-enriched proteoliposomes via voltage-sensitive and voltage-independent calcium channels. In the present study, we report heretofore unrecognized inhibitory effects of FSH on Na+/Ca++ exchange in these two systems. An outwardly directed Na+ gradient, developed by preincubating Sertoli cell monolayers in buffer made hypertonic with NaCl, resulted in uptake of 45Ca++ that was unaffected by calcium channel blocking agents, ruthenium red or methoxyverapamil, but was enhanced by ouabain, a specific inhibitor of Na+/K(+)-ATPase. Sodium-dependent 45Ca++ flux into Sertoli cells was inhibited in a concentration-related manner by increased extracellular Na+ (up to 135 mM). FSH consistently and reproducibly (28.9 +/- 3.8%, 10 separate assays) reduced sodium-dependent 45Ca++ influx in the absence or presence of ouabain. A lesser effect on Na+/Ca++ exchange was seen when Li+ replaced Na+ in the preincubation buffer, and a marked reduction occurred when Sertoli cells were incubated in buffer containing KCl, presumably due to membrane depolarization. FSH-sensitive Na+/45Ca++ exchange was also observed when using FSH receptor-enriched proteoliposomes. Our earlier calcium channel studies indicated that FSH affects Ca++ entry into Sertoli cells via a receptor-mediated process. The results reported here demonstrate that the interaction of FSH with its receptor is associated with changes in Na+/Ca++ exchange as well, and suggest that this activity may also be involved in regulating intracellular free Ca++ levels in the Sertoli cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.