Explosions are traditionally discriminated from earthquakes, using the relative amplitude of compressional and shear waves at regional and teleseismic distances known as the P/S discriminant. Pyle and Walter (2019) showed this technique to be less robust at shorter distances, in detecting small-magnitude earthquakes and low-yield explosions. The disparity is largely due to ground motion from small, shallow sources being significantly impacted by near-surface structural complexities. To understand the implications of wave propagation effects in generation of shear motion and P/S ratio during underground chemical explosions, we performed simulations of the Source Physics Experiment (SPE) chemical explosions using 1D and 3D velocity models of the Yucca Flat basin. All simulations used isotropic point sources in the frequency range 0–5 Hz. We isolate the effect of large-scale geological structure and small-scale variability at shallow depth (<5 km), using a regional 3D geologic framework model (GFM) and the GFM-R model derived from the GFM, by adding correlated stochastic velocity perturbations. A parametric study of effects of small-scale velocity variations on wave propagation, computed using a reference 1D velocity model with stochastic perturbations, shows that the correlation length and depth of stochastic perturbations significantly impact wave scattering, near-surface wave conversions, and shear-wave generation. Comparisons of recorded and simulated waveforms for the SPE-5 explosion, using 3D velocity models, demonstrate that the shallow structure of the Yucca Flat basin contributes to generation of observed shear motion. The inclusion of 3D wave scattering, simulated by small-scale velocity perturbations in the 3D model, improves the fit between the simulated and recorded waveforms. In addition, a relatively low intrinsic attenuation, combined with small-scale velocity variations in our models, can confirm the observed wave trapping and its effect on duration of coda waves and the spatial variation of P/S ratio at basin sites.
The Reno metropolitan area (located within the Truckee Meadows in northern Nevada) is subjected to significant seismic risk, primarily resulting from the region’s proximity to the Mount Rose fault system and the urban area’s presence within a large, thin (<1 km thick) sedimentary basin. Numerous paleoseismic studies have shown the Mount Rose fault system has a history of producing large Holocene earthquakes. To help explore this hazard, we used SW4, a physics-based wave-equation modeling tool, to develop the Reno ShakeOut Scenario. The scenario uses a grid with a minimum spacing of 20 m with eight points per minimum wavelength to perform a full 3D simulation for a potential magnitude 6.3 earthquake within the Mount Rose fault system. The calculation assumes a minimum shear-wave velocity (VSmin) of 500 m/s and is accurate up to 3.125 Hz. Results indicate that there is a potential for widespread and variable ground shaking at modified Mercalli intensity (MMI) magnitudes between VII and VIII (very strong to severe ground shaking), with some areas achieving violent (IX and X) motions. Distributions of high shaking are controlled by proximity to the rupture, geotechnical shear-wave velocity, topography; and significantly, basin geometry. Comparisons between SW4 peak ground velocity (PGV) computations, and PGV estimates calculated from the Campbell and Bozorgnia empirical ground-motion model emphasize the degree to which very thin basins may result in greater hazard than is currently predicted. This information helps improve our understanding of regional risk by highlighting these significant basin effects and the local variability that is likely to occur with any large seismic event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.