We introduce new methods of filtering and forecasting for the causal-noncausal convolution model. This model represents the dynamics of stationary processes with local explosions, such as spikes and bubbles, which characterize the time series of commodity prices, cryptocurrency exchange rates, and other financial and macroeconomic variables. The convolution model is a structural mixture of independent latent causal and noncausal component series. We propose an algorithm that recovers the latent components by evaluating the filtering density of one component, conditional on the observed past, present, and future values of the time series. Forecasts of the observed time series are obtained as a combination of filtered causal and noncausal component forecasts. The new filtering and forecasting methods are illustrated in a simulation study and compared with the results obtained from the mixed causal-noncausal autoregressive MAR model in application to WTI crude oil prices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.