A key feature of life’s diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant diversity to quantify the fraction of Earth’s plant biodiversity that are rare. A large fraction, ~36.5% of Earth’s ~435,000 plant species, are exceedingly rare. Sampling biases and prominent models, such as neutral theory and the k-niche model, cannot account for the observed prevalence of rarity. Our results indicate that (i) climatically more stable regions have harbored rare species and hence a large fraction of Earth’s plant species via reduced extinction risk but that (ii) climate change and human land use are now disproportionately impacting rare species. Estimates of global species abundance distributions have important implications for risk assessments and conservation planning in this era of rapid global change.
Climate suitability is projected to decline for many subalpine species, raising questions about managing species under a deteriorating climate. Whitebark pine (WBP) (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE) crystalizes the challenges that natural resource managers of many high mountain ecosystems will likely face in the coming decades. We review the system of interactions among climate, competitors, fire, bark beetles, white pine blister rust (Cronartium ribicola), and seed dispersers that make WBP especially vulnerable to climate change. A well-formulated interagency management strategy has been developed for WBP, but it has only been implemented across <1% of the species GYE range. The challenges of complex climate effects and land allocation constraints on WBP management raises questions regarding the efficacy of restoration efforts for WBP in GYE. We evaluate six ecological mechanisms by which WBP may remain viable under climate change: climate microrefugia, climate tolerances, release from competition, favorable fire regimes, seed production prior to beetle-induced mortality, and blister-rust resistant trees. These mechanisms suggest that WBP viability may be higher than previously expected under climate change. Additional research is warranted on these mechanisms, which may provide a basis for increased management effectiveness. This review is used as a basis for deriving recommendations for other subalpine species threatened by climate change.
Aim Addressing global environmental challenges requires access to biodiversity data across wide spatial, temporal and taxonomic scales. Availability of such data has increased exponentially recently with the proliferation of biodiversity databases. However, heterogeneous coverage, protocols, and standards have hampered integration among these databases. To stimulate the next stage of data integration, here we present a synthesis of major databases, and investigate (a) how the coverage of databases varies across taxonomy, space, and record type; (b) what degree of integration is present among databases; (c) how integration of databases can increase biodiversity knowledge; and (d) the barriers to database integration. Location Global. Time period Contemporary. Major taxa studied Plants and vertebrates. Methods We reviewed 12 established biodiversity databases that mainly focus on geographic distributions and functional traits at global scale. We synthesized information from these databases to assess the status of their integration and major knowledge gaps and barriers to full integration. We estimated how improved integration can increase the data coverage for terrestrial plants and vertebrates. Results Every database reviewed had a unique focus of data coverage. Exchanges of biodiversity information were common among databases, although not always clearly documented. Functional trait databases were more isolated than those pertaining to species distributions. Variation and potential incompatibility of taxonomic systems used by different databases posed a major barrier to data integration. We found that integration of distribution databases could lead to increased taxonomic coverage that corresponds to 23 years’ advancement in data accumulation, and improvement in taxonomic coverage could be as high as 22.4% for trait databases. Main conclusions Rapid increases in biodiversity knowledge can be achieved through the integration of databases, providing the data necessary to address critical environmental challenges. Full integration across databases will require tackling the major impediments to data integration: taxonomic incompatibility, lags in data exchange, barriers to effective data synchronization, and isolation of individual initiatives.
Tropical forest mortality is controlled by both biotic and abiotic processes, but how these processes interact to determine forest structure is not well understood. Using long‐term demography data from permanent forest plots at the Paracou Tropical Forest Research Station in French Guiana, we analysed the relative influence of competition and climate on tree mortality. We found that self‐thinning is evident at the stand level, and is associated with clumped mortality at smaller scales (<2 m) and regular spacing of living trees at intermediate (2.5–7.5 m) scales. A competition index (CI) based on spatial clustering of dead trees was used to build predictive mortality models, which also accounted for climate interactions. The model that most closely fitted observations included both the CI and climatic variables, with climate‐only and competition‐only models less informative than the full model. There was strong evidence for U‐shaped size‐specific mortality, with highest mortality for small and very large trees, as well as sensitivity of trees to drought, especially when temperatures were high, and when soils were water saturated. The effect of the CI was more complex than expected a priori: a higher CI was associated with lower mortality odds, which we hypothesize is caused by gap‐phase dynamics, but there was also evidence for competition‐induced mortality at very high CI values. The strong signature of competition as a control over mortality at the stand and individual scales confirms its important role in determining tropical forest structure. The complexity of the competition‐mortality relationship and its interaction with climate indicates that a thorough consideration of the scale of analysis is needed when inferring the role of competition in tropical forests, but demonstrates that climate‐only mortality models can be significantly improved by including competition effects, even when ignoring species‐specific effects. Synthesis. Empirical models such as the one developed here can help constrain and improve process‐based vegetation models, serving both as a benchmark and as a means to disentangle mortality processes. Tropical vegetation dynamic models would benefit greatly from explicitly considering the role of competition in stand development and self‐thinning while modelling demography, as well as its interaction with climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.