shelf-and river-derived elements to the central Arctic Ocean • The TPD is rich in dissolved organic matter (DOM), which facilitates long-range transport of trace metals that form complexes with DOM • Margin trace element fluxes may increase with future Arctic warming due to DOM release from permafrost thaw and increasing river discharge
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEls) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-sigma data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes. (C) 2015 The Authors. Published by Elsevier B.V
[1] The loss of Arctic sea ice has accelerated in recent years. With the decline in sea ice cover, the Arctic Ocean biogeochemistry is undergoing unprecedented change. A key question about the changing Arctic Ocean biogeochemistry is concerning the impact of the shrinking sea ice cover on the particulate organic carbon (POC) export from the upper Arctic Ocean. Thus far, there are still very few direct measurements of POC export in the permanently ice-covered central Arctic Ocean. A further issue is that the magnitude of the POC export so far documented in this region remains controversial. During the ARK-XXII/2 expedition to the Arctic Ocean from 28 July to 7 October in 2007, we conducted a high-resolution study of POC export using 234 Th/ 238 U disequilibrium. Depth profiles of total 234 Th in the upper 200 m were collected at 36 stations in the central Arctic Ocean and its adjacent seas, i.e., the Barents Sea, the Kara Sea and the Laptev Sea. Samples were processed using a small-volume MnO 2 coprecipitation method with addition of a yield tracer, which resulted in one of the most precise 234 Th data sets ever collected. Thorium-234 deficit with respect to 238 U was found to be evident throughout the upper 100 m over the Arctic shelves. In comparison, 234 Th deficit was confined to the upper 25 m in the central Arctic Ocean. Below 25 m, secular equilibrium was approached between 234 Th and 238 U. The observed 234 Th deficit was generally associated with enhanced total chlorophyll concentrations, indicating that in situ production and export of biogenic particles are the main mechanism for 234 Th removal in the Arctic Ocean. Thorium-234-derived POC fluxes were determined with a steady state model and pump-normalized POC/ 234 Th ratios on total suspended particles collected at 100 m. Results showed enhanced POC export over the Arctic shelves. On average, POC export fluxes over the various Arctic shelves were 2.7 ± 1.7 mmol m −2 d −1 (the Barents Sea), 0.5 ± 0.8 mmol m −2 d −1 (the Kara Sea), and 2.9 ± 1.8 mmol m −2 d −1 (the Laptev Sea) respectively. In comparison, the central Arctic Ocean was characterized by the lowest POC export flux ever reported, 0.2 ± 1.0 mmol m −2 d −1 (1 standard deviation, n = 26). This value is very low compared to prior estimates and is also much lower than the POC export fluxes reported in other oligotrophic oceans. A ThE ratio ( 234 Th-derived POC export/primary production) of <6% in the central Arctic Ocean was estimated using the historical measurements of primary production. The low ThE ratio indicates that like other oligotrophic regimes, the central Arctic Ocean is characterized by low POC export relative to primary production, i.e., a tightly coupled food web. Our study strongly suggests that the current role of the central Arctic Ocean in C sequestration is still very limited. Meanwhile, this role might be altered because of global warming and future decline in sea ice cover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.