For efficient removal of large molecular weight solutes by dialysis, several types of internal filtration-enhancing dialyzers (IFEDs) are commercially available. However, in a pressure-driven membrane separation process (i.e., filtration), membrane fouling caused by adhesion of plasma proteins is a severe problem. The objective of the present study is to investigate the effects of internal filtration on membrane fouling based on the membrane's pure-water permeability, diffusive permeability, and sieving coefficient. Hemodialysis experiments were performed with two different dialyzers, IFEDs and non-IFEDs. Local membrane fouling in each dialyzer was evaluated by measuring the pure-water permeability, the diffusive permeability, and the sieving coefficient of native membranes and membranes treated with bovine blood. The effects of packing ratio on dialysate flow pattern were also evaluated by measuring the time required for an ion tracer to reach electrodes placed in the dialyzers. In the IFED, membrane fouling caused by protein adhesion is increased because of enhanced internal filtration only at the early stage of dialysis, and this fouling tends to occur only near the dialysate outlet port. However, enhanced internal filtration has little effect on measured membrane transfer parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.