The present paper proposes a recommendation method that focuses not only on predictive accuracy but also serendipity. In many of the conventional recommendation methods, items are categorized according to their attributes (genre, author, etc.) by the recommender in advance, and recommendations are made using the categorization. In the present study, the impression of users regarding an item is adopted as its feature, and items are categorized according to this feature. Such impressions are derived using folksonomy. A recommender system based on the proposed method was developed in the Java language, and the effectiveness of the proposed method was verified through recommender experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.