In the current study, the potential contributions of ryanodine receptors (RyRs) to intrinsic pumping and responsiveness to substance P (SP) were investigated in isolated rat mesenteric collecting lymphatic vessels. Responses to SP were characterized in lymphatic vessels in the absence or presence of pretreatment with nifedipine to block L-type Ca2+ channels, caffeine to block normal release and uptake of Ca2+ from the sarcoplasmic reticulum, ryanodine to block all RyR isoforms, or dantrolene to more selectively block RyR1 and RyR3. RyR expression and localization in lymphatics was also assessed by quantitative PCR and immunofluorescence confocal microscopy. The results show that SP normally elicits a significant increase in contraction frequency and a decrease in end-diastolic diameter. In the presence of nifedipine, phasic contractions stop, yet subsequent SP treatment still elicits a strong tonic contraction. Caffeine treatment gradually relaxes lymphatics, causing a loss of phasic contractions, and prevents subsequent SP-induced tonic contraction. Ryanodine also gradually diminishes phasic contractions but without causing vessel relaxation and significantly inhibits the SP-induced tonic contraction. Dantrolene treatment did not significantly impair lymphatic contractions nor the response to SP. The mRNA for all RyR isoforms is detectable in isolated lymphatics. RyR2 and RyR3 proteins are found predominantly in the collecting lymphatic smooth muscle layer. Collectively, the data suggest that SP-induced tonic contraction requires both extracellular Ca2+ plus Ca2+ release from internal stores and that RyRs play a role in the normal contractions and responsiveness to SP of rat mesenteric collecting lymphatics. NEW & NOTEWORTHY The mechanisms that govern contractions of lymphatic vessels remain unclear. Tonic contraction of lymphatic vessels caused by substance P was blocked by caffeine, which prevents normal uptake and release of Ca2+ from internal stores, but not nifedipine, which blocks L-type channel-mediated Ca2+ entry. Ryanodine, which also disrupts normal sarcoplasmic reticulum Ca2+ release and reuptake, significantly inhibited substance P-induced tonic contraction. Ryanodine receptors 2 and 3 were detected within the smooth muscle layer of collecting lymphatic vessels.
For the purpose of developing novel anti-hepatitis C virus (HCV) agents from natural resources, 93 Yunnan crude drugs were screened for their inhibitory effects on RNA-dependent RNA polymerase (RdRp) of HCV. Although 71 methanol extracts and 50 water extracts inhibited HCV-RdRp by more than 50% at a concentration of 50 μg/ml, the majority of them contained a high percentage of tannins. However, methanol extracts of Plumbago zeylanica (branch), Maytenus fookerii (leaf) and Huashidancha (Y61, branch and leaf), and water extracts of Potentilla griffithii (whole plant) and Salvia yunnanensis (underground part), having IC values of less than 10 μg/ml, showed less than 10% tannin content. In addition, from a methanol extract of Tripterygium hypoglaucum (root bark), demethylzeylasteral was isolated as a strongly inhibitory substance against HCV-RdRp.
Brain-derived neurotrophic factor (BDNF) is a key player in synaptic plasticity, and consequently, learning and memory. Because of its fundamental role in numerous neurological functions in the central nervous system, BDNF has utility as a biomarker and drug target for neurodegenerative and neuropsychiatric disorders. Here, we generated a screening assay to mine inducers of Bdnf transcription in neuronal cells, using primary cultures of cortical cells prepared from a transgenic mouse strain, specifically, Bdnf-Luciferase transgenic ( Bdnf-Luc ) mice. We identified several active extracts from a library consisting of 120 herbal extracts. In particular, we focused on an active extract prepared from Ginseng Radix (GIN), and found that GIN activated endogenous Bdnf expression via cAMP-response element-binding protein-dependent transcription. Taken together, our current screening assay can be used for validating herbal extracts, food-derived agents, and chemical compounds for their ability to induce Bdnf expression in neurons. This method will be beneficial for screening of candidate drugs for ameliorating symptoms of neurological diseases associated with reduced Bdnf expression in the brain, as well as candidate inhibitors of aging-related cognitive decline.
The effects of keishibukuryogan on the early stage of progressive renal failure were examined in rats subjected to 5/6 nephrectomy. Keishibukuryogan, one of the traditional herbal formulations, was given orally at a dose of 1% (w/w) and 3% (w/w) in chow. Administration of keishibukuryogan was started at 1 week after 5/6 nephrectomy and was continued for 4 weeks. At the end of the experiment, Azan staining did not reveal any severe histological changes in the kidneys of the nephrectomized rats. On the other hand, significant increases in mRNA expressions of transforming growth factor-β 1 and fibronectin related to tissue fibrosis, as examined by Reverse Transcriptase-Polymerase Chain Reaction, were observed in nephrectomized rats, and they were significantly suppressed by 3% keishibukuryogan treatment. Against gene expressions related to macrophage infiltration, 3% keishibukuryogan treatment significantly suppressed osteopontin mRNA levels, and monocyte chemoattractant protein-1 and vascular cell adhesion molecule-1 mRNA levels showed a tendency to decrease, but without statistical significance. It was also observed that 3% keishibukuryogan attenuated serum urea nitrogen and urinary protein excretion levels. From these results, it was suggested that keishibukuryogan exerts beneficial effects that result in slowing the progression of chronic renal failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.