Pore pressure is an important factor in controlling the slip instability of faults and thus the generation of earthquakes. Particularly slow earthquakes are widespread in subduction zones and usually linked to the occurrence of high pore pressure. Yet the influence of fluid pressure and effective stress on the mechanics of earthquakes is poorly understood. Therefore, we performed shear experiments on blueschist fault rocks, which likely exist at depth in cold and old subduction zones, to investigate the influence of effective stress on frictional behavior. Our results show potentially unstable behavior at temperatures characterizing the seismogenic zone, as well as a transition from stable to unstable behavior with decreasing effective normal stress, which is mechanically equivalent to increasing fluid pressure. This transition is a prerequisite for generating slow earthquakes. Our results imply that high pore pressures are a key factor for nucleating slip leading to both megathrust and slow earthquakes.
Chapter 1: Introduction 1.1 General motivation 1.2 Aims of this thesis Chapter 2: Frictional properties of incoming pelagic sediments at the Japan Trench: implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake Abstract 2.1 Introduction 2.2 Experimental methods 2.3 Results 2.4 Discussion 2.5 Conclusions Chapter 3: Depth limits of slow slip events at Tohoku
The 2011 Tohoku earthquake (Mw 9.0) produced a very large slip on the shallow part of a megathrust fault that resulted in destructive tsunamis. Although multiple causes of such large slip at shallow depths are to be expected, the frictional property of sediments around the fault, particularly at coseismic slip velocities, may significantly contribute to large slip along such faults. We have thus investigated the frictional properties of incoming pelagic sediments that will subduct along the plate boundary fault at the Tohoku subduction zone, in order to understand the rupture processes that can cause large slip in the shallow parts of subduction zones. Our experimental results on clayey sediment at the base of the sedimentary section on the Pacific Plate yield a low friction coefficient of <0.2 over a wide range of slip velocities (0.25 mm/s to 1.3 m/s), and extremely low fracture energy during slip weakening, as compared with previous experiments of disaggregated sediments under coseismic slip conditions. Integrated Ocean Drilling Program (IODP) Expedition 343 confirmed that the clay-rich sediment investigated here is identical to those in the plate boundary fault zone, which ruptured and generated the Tohoku earthquake. The present results suggest that smectite-rich pelagic sediment not only accommodates cumulative plate motion over interseismic periods but also energetically facilitates the propagation of earthquake rupture towards the shallow part of the Tohoku subduction zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.