Use of mesenchymal stem cells (MSCs) has emerged as a potential new treatment for various diseases but has generated marginally successful results. A consistent finding of most studies is massive death of transplanted cells. The present study examined the respective roles of glucose and continuous severe hypoxia on MSC viability and function with respect to bone tissue engineering. We hereby demonstrate for the first time that MSCs survive exposure to long-term (12 days), severe (pO2 < 1.5 mmHg) hypoxia, provided glucose is available. To this end, an in vitro model that mimics the hypoxic environment and cell-driven metabolic changes encountered by grafted sheep cells was established. In this model, the hallmarks of hypoxia (low pO2, hypoxia inducible factor-1α expression and anaerobic metabolism) were present. When conditions switched from hypoxic (low pO2) to ischemic (low pO2 and glucose depletion), MSCs exhibited shrinking, decreased cell viability and ATP content due to complete exhaustion of glucose at day 6; these results provided evidence that ischemia led to the observed massive cell death. Moreover, MSCs exposed to severe, continuous hypoxia, but without any glucose shortage, remained viable and maintained both their in vitro proliferative ability after simulation with blood reperfusion at day 12 and their in vivo osteogenic ability. These findings challenge the traditional view according to which severe hypoxia per se is responsible for the massive MSC death observed upon transplantation of these cells and provide evidence that MSCs are able to withstand exposure to severe, continuous hypoxia provided that a glucose supply is available.
Mesenchymal stem cells (MSCs) hold considerable promise in tissue engineering (TE). However, their poor survival when exogenously administered limits their therapeutic potential. Previous studies from our group demonstrated that lack of glucose (glc) (but not of oxygen) is fatal to human MSCs because it serves as a pro-survival and pro-angiogenic molecule for human MSCs (hMSCs) upon transplantation. However, which energy-providing pathways MSCs use to metabolize glc upon transplantation? Are there alternative energetic nutrients to replace glc? And most importantly, do hMSCs possess significant intracellular glc reserves for ensuring their survival upon transplantation? These remain open questions at the forefront of TE based-therapies. In this study, we established for the first time that the in vivo environment experienced by hMSCs is best reflected by near-anoxia (0.1% O ) rather than hypoxia (1%-5% O ) in vitro. Under these near-anoxia conditions, hMSCs rely almost exclusively on glc through anerobic glycolysis for ATP production and are unable to use either exogenous glutamine, serine, or pyruvate as energy substrates. Most importantly, hMSCs are unable to adapt their metabolism to the lack of exogenous glc, possess a very limited internal stock of glc and virtually no ATP reserves. This lack of downregulation of energy turnover as a function of exogenous glc level results in a rapid depletion of hMSC energy reserves that explains their poor survival rate. These new insights prompt for the development of glc-releasing scaffolds to overcome this roadblock plaguing the field of TE based-therapies. Stem Cells 2018;36:363-376.
The present study investigated and characterized select aspects of the human mesenchymal stem cell (hMSC) secretome and assessed its in vitro and in vivo biological bioactivity as a function of oxygen tension, specifically near anoxia (0.1% O2) and hypoxia (5% O2), conditions that reflect the environment to which MSCs are exposed during MSC-based therapies in vivo. The present study provided the first evidence of a shift of the hMSC cytokine signature induced by oxygen tension, particularly near anoxia (0.1% O2). Conditioned media obtained from hMSCs cultured under near anoxia exhibited significantly enhanced chemotactic and proangiogenic properties and a significant decrease in the inflammatory mediator content. These findings provide new evidence that elucidates aspects of great importance for the use of MSCs in regenerative medicine, could contribute to improving the efficacy of such therapies, and most importantly highlighted the interest in using conditioned media in therapeutic modalities.
A major impediment to the development of therapies with mesenchymal stem cells/multipotent stromal cells (MSC) is the poor survival and engraftment of MSCs at the site of injury. We hypothesized that lowering the energetic demand of MSCs by driving them into a quiescent state would enhance their survival under ischemic conditions. Human MSCs (hMSCs) were induced into quiescence by serum deprivation (SD) for 48 hours. Such preconditioned cells (SDhMSCs) exhibited reduced nucleotide and protein syntheses compared to unpreconditioned hMSCs. SD-hMSCs sustained their viability and their ATP levels upon exposure to severe, continuous, near-anoxia (0.1% O 2 ) and total glucose depletion for up to 14 consecutive days in vitro, as they maintained their hMSC multipotential capabilities upon reperfusion. Most importantly, SD-hMSCs showed enhanced viability in vivo for the first week postimplantation in mice. Quiescence preconditioning modified the energy-metabolic profile of hMSCs: it suppressed energysensing mTOR signaling, stimulated autophagy, promoted a shift in bioenergetic metabolism from oxidative phosphorylation to glycolysis and upregulated the expression of gluconeogenic enzymes, such as PEPCK. Since the presence of pyruvate in cell culture media was critical for SD-hMSC survival under ischemic conditions, we speculate that these cells may utilize some steps of gluconeogenesis to overcome metabolic stress. These findings support that SD preconditioning causes a protective metabolic adaptation that might be taken advantage of to improve hMSC survival in ischemic environments. STEM CELLS 2017;35:181-196 SIGNIFICANCE STATEMENTPoor survival of grafted cells at the injury site is the major impediment for developing successful cell based therapies. While some studies have focused on improving cell survival upon implantation, most of them have failed to address the critical issue of long term cell survival postimplantation thus drastically reducing the potential benefit of these therapies. In this study, we demonstrated that cellular quiescence preconditioning is a simple, safe, yet very efficient solution for enhancing cell survival in ischemia that may be applicable not only for adult stem cells (hMSC) but also other cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.