In this paper, we present the design, fabrication, and characterization of wire grid polarizers. These polarizers show high extinction ratios and high transmission with structure dimensions that are compatible with current complementary metal-oxide-semiconductor ͑CMOS͒ technology. To design these wire grids, we first analyze the transmission properties of single apertures. From the understanding of a single aperture, we apply a modal expansion method to model wire grids. The most promising grids are fabricated on both a glass substrate and CMOS photodiode. An extinction ratio higher than 200 is measured.
In this paper, a fast and inexpensive wafer-scale process for the fabrication of arrays of nanoscale holes in thin gold films for plasmonics is shown. The process combines nanosphere lithography using spin-coated polystyrene beads with a sputter-etching process. This allows the batch fabrication of several 1000 microm(2) large hole arrays in 200 nm thick gold films without the use of an adhesion layer for the gold film. The hole size and lattice period can be tuned independently with this method. This allows tuning of the optical properties of the hole arrays for the desired application. An example application, refractive index sensing, is demonstrated.
Enhanced optical transmission (EOT) through a single aperture is usually achieved by exciting surface plasmon polaritons with periodic grooves. Surface plasmon polaritons are only excited by p-polarized incident light, i.e. with the electric field perpendicular to the direction of the grooves. The present study experimentally investigates EOT for s-polarized light. A subwavelength slit surrounded on each side by periodic grooves has been fabricated in a gold film and covered by a thin dielectric layer. The excitation of s-polarized dielectric waveguide modes inside the dielectric film strongly increases the s-polarized transmission. A 25 fold increase is measured as compared to the case without the dielectric film. Transmission measurements are compared with a coupled mode method and show good qualitative agreement. Adding a waveguide can improve light transmission through subwavelength apertures, as both s and p-polarization can be efficiently transmitted.
An enhanced transmission is detected through a single slit of subwavelength width surrounded by grooves in a gold layer that is added as a postprocess to a standard complementary metal oxide semiconductor (CMOS) fabricated detector. The enhanced transmission results from constructive interference of surface waves, which interact with the incident light. The measured enhanced transmission shows strong qualitative agreement with that predicted by the modal expansion method. With the decreasing dimensions available in standard CMOS process, such nanostructures in metals could be used to replace current optical systems or to improve performance by increasing the signal to noise ratio and/or allowing polarization selection.
An analytical model based on a modal expansion method is developed to investigate the optical transmission through metal gratings. This model gives analytical expressions for the transmission as well as for the dispersion relations of the modes responsible for high transmission. These expressions are accurate even for real metals used in the visible - near-infrared wavelength range, where surface plasmon polaritons (SPP's) are excited. The dispersion relations allow the nature of the modes to be assessed. We find that the transmission modes are hybrid between Fabry-Pérot like modes and SPP's. It is also shown that it is important to consider different refractive indices above and below the gratings in order to determine the nature of the hybrid modes. These findings are important as they clarify the nature of the modes responsible for high transmission. It can also be useful as a design tool for metal gratings for various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.