A macroscopic model of road traffic flow in an entire city is constructed, using the example of Wrocław. The model is of deterministic-random type. The start and finish points of each vehicle journey are random elements of the model, while the street graph, routes of travel and traffic parameters are obtained in a deterministic manner. Vehicle speed is dependent on traffic density, and the time needed to cross an intersection depends on the number of waiting vehicles. The route of travel between given start and finish points is determined using Dijkstra’s algorithm, minimising the journey time. The street graph of Wrocław was constructed using data from the Open Street Map website. Identification of parameters and verification of the model were performed using hourly data on traffic volumes at the city’s major intersections in the years 2015–16, obtained from the Intelligent Transport System (ITS). Identification was made of the total number of vehicles travelling in the city at each time of day, a quantity that is difficult to determine by other methods. An accuracy of around 15% was obtained for times between 6.00 and 22.00, while for night-time the verification error exceeded 30%. The model may be used to analyse the impact of planned modifications to the transport system on traffic parameters in the city. It may also serve as a constituent of a larger model for investigating the effect of road transport on atmospheric pollution or for identifying areas at risk of noise pollution.
The finalisation of the construction of the Malczyce barrage is planned for 2015. Damming of the river will cause a change in the water and ground conditions in the adjoining areas. The paper analyses the influence of the water level in the Oder River dammed by the barrage on groundwater table level in the left bank valley. A model which allows the prediction of groundwater levels depending on the assumed water level in the Oder was constructed. The analysis was conducted for three different variants: for the initial stage before damming the Oder River and for the conditions after damming the water up with and without the drainage devices included in the project. The calculations were done in several chosen transects across the river valley. The mathematical model of flow in the aquifer based on the Richards equation was applied. The results of calculations were presented as the spatial distribution of piezometric pressures which were used to determine the groundwater table for each of the transects. The calculation results from the vertical models were transposed into a horizontal model. The comparison of appropriate results allowed to positively verify the designed model and to analyse the effectiveness of the realised project solutions.
Groundwater table levels in a river valley depend, among other factors, on meteorological and hydrogeological conditions, land use and water levels in watercourses. The primary role of a watercourse is to collect surface and groundwater, and it becomes an infiltrating watercourse at high water levels. Changes in groundwater levels and the range of these changes depend chiefly on the shape, height and duration of the flood wave in the river channel. The assessment of flood wave impact on groundwater was based on long-term measurements of groundwater levels in the Odra valley and observations of water levels in the river channel. Simulations were performed with the use of in-house software FIZ (Filtracja i Zanieczyszczenia; Filtration and Contamination), designed for modelling unsteady water flows within a fully saturated zone. A two-dimensional model with two spatial variables was employed. The process of groundwater flow through a porous medium, non-homogeneous in terms of water permeability, was described with Boussinesq equation. The equation was solved with the use of finite element method. The model was applied to assess groundwater level fluctuations in the Odra valley in the context of actual flood waves on the river. Variations in groundwater table in the valley were analysed in relation to selected actual flood water levels in the Odra in 2001-2003 and 2010. The period from 2001 to 2003 was used to verify the model. A satisfactory agreement between the calculated and the measured values was obtained. Based on simulation calculations, it was proved that flood waves observed in 2010 caused a rise in groundwater table levels in a belt of approximately 1000 metres from the watercourses. It was calculated that at the end of hydrological year 2009/2010, the highest growths, of up to 0.80 m, were observed on piezometers located close to the Odra river channel. The passage of several flood waves on the Odra caused an increase of subsurface retention by 3.0% compared to the initial state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.