Elsevier Lago, MA.; Rupérez Moreno, MJ.; Martínez Martínez, F.; Monserrat Aranda, C.; Larra, E.; Gueell, JL.; Peris-Martinez, C. (2015). A new methodology for the in vivo estimation of the elastic constants that characterize the patient-specific biomechanical behavior of the human cornea. Journal of Biomechanics. 48(1): 38-43. doi:10.1016/j.jbiomech.2014.11.009. A new methodology for the in-vivo estimation of the elastic constants that characterize the patient-specific biomechanical behavior of the human cornea
AbstractThis work presents a methodology for the in-vivo characterization of the complete biomechanical behavior of the human cornea of each patient. Specifically, the elastic constants of a hyperelastic, second-order Ogden model were estimated for 24 corneas corresponding to 12 patients. The finite element method was applied to simulate the deformation of human corneas due to non-contact tonometry, and an iterative search controlled by a genetic heuristic was used to estimate the elastic parameters that most closely approximates the simulated deformation to the real one. The results from a synthetic experiment showed that these parameters can be estimated with an error of about 5%. The results of 24 in-vivo corneas showed an overlap of about 90% between simulation and real deformed cornea and a modified Hausdorff distance of 25µm, which indicates the great accuracy of the proposed methodology.
Elsevier Lago, MA.; Rupérez Moreno, MJ.; Martínez Martínez, F.; Monserrat Aranda, C.; Larra, E.; Gueell, JL.; Peris-Martinez, C. (2015). A new methodology for the in vivo estimation of the elastic constants that characterize the patient-specific biomechanical behavior of the human cornea. Journal of Biomechanics. 48(1): 38-43. doi:10.1016/j.jbiomech.2014.11.009. A new methodology for the in-vivo estimation of the elastic constants that characterize the patient-specific biomechanical behavior of the human cornea
AbstractThis work presents a methodology for the in-vivo characterization of the complete biomechanical behavior of the human cornea of each patient. Specifically, the elastic constants of a hyperelastic, second-order Ogden model were estimated for 24 corneas corresponding to 12 patients. The finite element method was applied to simulate the deformation of human corneas due to non-contact tonometry, and an iterative search controlled by a genetic heuristic was used to estimate the elastic parameters that most closely approximates the simulated deformation to the real one. The results from a synthetic experiment showed that these parameters can be estimated with an error of about 5%. The results of 24 in-vivo corneas showed an overlap of about 90% between simulation and real deformed cornea and a modified Hausdorff distance of 25µm, which indicates the great accuracy of the proposed methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.