This work presents a three-dimensional computational fluid dynamics (CFD) study of a two-phase flow field in a gas-liquid cylindrical cyclone (GLCC) using CFX4.3™, a commercial code based on the finite volume method. The numerical analysis was made for air-water mixtures at near atmospheric conditions, while both liquid and gas flow rates were changed. The two-phase flow behavior is modeled using an Eulerian-Eulerian approach, considering both phases as an interpenetrating continuum. This method computed the inter-phase phenomena by including a source term in the momentum equation to consider the drag between the liquid and gas phases. The gas phase is modeled as a bimodal bubble size distribution to allow for the presence of free- and entrapment gas, simultaneously. The results (free surface shape and liquid angular velocity) show a reasonable match with experimental data. The CFD technique here proposed demonstrates to satisfactorily reproduce angular velocities of the phases and their spatial distribution inside the GLCC. Computed results also proved to be useful in forecasting bubble and droplet trajectories, from which gas carry under (GCU) and liquid carry over might be estimated. Nevertheless, moderate differences found between the computed GCU and experimental measurements suggest that new adjustments may be done to the numerical model to improve its accuracy.
This work presents a three-dimensional CFD study of a two-phase flow field in a Gas-Liquid Cylindrical Cyclone (GLCC) using CFX4.3™, a commercial code based on the finite volume method. The numerical analysis was made for air-water mixtures at near atmospheric conditions, while both liquid and gas flow rates were changed. The two-phase flow behavior is modeled using an Eulerian-Eulerian approach, considering both phases as an interpenetrating continuum. This method computed the inter-phase phenomena by including a source term in the momentum equation to consider the drag between the liquid and gas phases. The gas phase is modeled as a bimodal bubble size distribution to allow for the presence of free- and entrapment gas, simultaneously. The results (free surface shape and liquid angular velocity) show a reasonable match with experimental data. The CFD technique here proposed, demonstrates to satisfactorily reproduce angular velocities of the phases and their spatial distribution inside the GLCC. Computed results also proved to be useful in forecasting bubble and droplet trajectories, from which gas carry under (GCU) and liquid carry over (LCO) might be estimated. Nevertheless, moderate differences found between the computed GCU and experimental measurements, suggests that new adjustments may be done to the numerical model to improve its accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.