An innovative approach to physical activity recognition based on the use of discrete variables obtained from accelerometer sensors is presented. The system first performs a discretization process for each variable, which allows efficient recognition of activities performed by users using as little energy as possible. To this end, an innovative discretization and classification technique is presented based on the χ2 distribution. Furthermore, the entire recognition process is executed on the smartphone, which determines not only the activity performed, but also the frequency at which it is carried out. These techniques and the new classification system presented reduce energy consumption caused by the activity monitoring system. The energy saved increases smartphone usage time to more than 27 h without recharging while maintaining accuracy.
a b s t r a c tCurrently, the lifestyle of elderly people is regularly monitored in order to establish guidelines for rehabilitation processes or ensure the welfare of this segment of the population. In this sense, activity recognition is essential to detect an objective set of behaviors throughout the day. This paper describes an accurate, comfortable and efficient system, which monitors the physical activity carried out by the user. An extension to an awarded activity recognition system that participated in the EvAAL 2012 and EvAAL 2013 competitions is presented. This approach uses data retrieved from accelerometer sensors to generate discrete variables and it is tested in a non-controlled environment. In order to achieve the goal, the core of the algorithm Ameva is used to develop an innovative selection, discretization and classification technique for activity recognition. Moreover, with the purpose of reducing the cost and increasing user acceptance and usability, the entire system uses only a smartphone to recover all the information required.
Human activity recognition systems are currently implemented by hundreds of applications and, in recent years, several technology manufacturers have introduced new wearable devices for this purpose. Battery consumption constitutes a critical point in these systems since most are provided with a rechargeable battery. In this paper, by using discrete techniques based on the Ameva algorithm, an innovative approach for human activity recognition systems on mobile devices is presented. Furthermore, unlike other systems in current use, this proposal enables recognition of high granularity activities by using accelerometer sensors. Hence, the accuracy of activity recognition systems can be increased without sacrificing efficiency. A comparative is carried out between the proposed approach and an approach based on the well-known neural networks.
Activity recognition (AR) and fall detection (FD) research areas are very related in assistance scenarios but evolve independently. Evaluate them is not trivial and the lack of FD real-world datasets implies a big issue. A protocol that fuses AR and FD is proposed to achieve a large, open and growing dataset that could, potentially, provide an enhanced understanding of the activities and fall process and the information needed to design and evaluate high-performance systems.
This paper aims to develop a cheap, comfortable and, specially, efficient system which controls the physical activity carried out by the user. For this purpose an extended approach to physical activity recognition is presented, based on the use of discrete variables which employ data from accelerometer sensors. To this end, an innovative selection, discretization and classification technique to make the recognition process in an efficient way and at low energy cost, is presented in this work based on Ameva discretization. Entire process is executed on the smartphone and on a wireless health monitoring system is used when the smartphone is not used taking into account the system energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.