Most of the microorganisms living in a symbiotic relationship in different animal body sites (microbiota) reside in the gastrointestinal tract (GIT). Several studies have shown that the microbiota is involved in host susceptibilities to pathogens. The fecal microbiota of domestic and wild suids was analyzed. Bacterial communities were determined from feces obtained from domestic pigs (Sus scrofa) raised under different conditions: specific-pathogen-free (SPF) pigs and domestic pigs from the same bred, and indigenous domestic pigs from a backyard farm in Kenya. Secondly, the fecal microbiota composition of the African swine fever (ASF) resistant warthogs (Phacochoerus africanus) from Africa and a European zoo was determined. African swine fever (ASF) is a devastating disease for domestic pigs. African animals showed the highest microbial diversity while the SPF pigs the lowest. Analysis of the core microbiota from warthogs (resistant to ASF) and pigs (susceptible to ASF) showed 45 shared OTUs, while 6 OTUs were exclusively present in resistant animals. These six OTUs were members of the Moraxellaceae family, Pseudomonadales order and Paludibacter, Anaeroplasma, Petrimonas, and Moraxella genera. Further characterization of these microbial communities should be performed to determine the potential involvement in ASF resistance.
African swine fever (ASF) is today′s number one threat for the global swine industry. Neither commercial vaccine nor treatment is available against ASF and, thus far, only live attenuated viruses (LAV) have provided robust protection against lethal ASF virus (ASFV) challenge infections. Identification of ASFV proteins inducing protective immune responses is one of the major challenges to develop safer and efficient subunit vaccines. Immunopeptidomic studies recently performed in our laboratory allowed identifying ASFV antigens recognized by ASFV-specific CD8+ T-cells. Here, we used data from the SLAI-peptide repertoire presented by a single set of ASFV-infected porcine alveolar macrophages to generate a complex DNA vaccine composed by 15 plasmids encoding the individual peptide-bearing ORFs. DNA vaccine priming improved the protection afforded by a suboptimal dose of the BA71ΔCD2 LAV given as booster vaccination, against Georgia2007/1 lethal challenge. Interestingly, M448R was the only protein promiscuously recognized by the induced ASFV-specific T-cells. Furthermore, priming pigs with DNA plasmids encoding M488R and MGF505-7R, a CD8+ T-cell antigen previously described, confirmed these two proteins as T-cell antigens with protective potential. These studies might be useful to pave the road for designing safe and more efficient vaccine formulations in the future.
Fibrinous polyserositis in swine farming is a common pathological finding in nursery animals. The differential diagnosis of this finding should include Glaesserella parasuis (aetiological agent of Glässer’s disease) and Mycoplasma hyorhinis, among others. These microorganisms are early colonizers of the upper respiratory tract of piglets. The composition of the nasal microbiota at weaning was shown to constitute a predisposing factor for the development of Glässer’s disease. Here, we unravel the role of the nasal microbiota in the subsequent systemic infection by M. hyorhinis, and the similarities and differences with Glässer’s disease. Nasal samples from farms with recurrent problems with polyserositis associated with M. hyorhinis (MH) or Glässer’s disease (GD) were included in this study, together with healthy control farms (HC). Nasal swabs were taken from piglets in MH farms at weaning, before the onset of the clinical outbreaks, and were submitted to 16S rRNA gene amplicon sequencing (V3–V4 region). These sequences were analyzed together with sequences from similar samples previously obtained in GD and HC farms. Animals from farms with disease (MH and GD) had a nasal microbiota with lower diversity than those from the HC farms. However, the composition of the nasal microbiota of the piglets from these disease farms was different, suggesting that divergent microbiota imbalances may predispose the animals to the two systemic infections. We also found variants of the pathogens that were associated with the farms with the corresponding disease, highlighting the importance of studying the microbiome at strain-level resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.