Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing.
The increasing demands on information processing require novel computational concepts and true parallelism. Nevertheless, hardware realizations of unconventional computing approaches never exceeded a marginal existence. While the application of optics in super-computing receives reawakened interest, new concepts, partly neuro-inspired, are being considered and developed. Here we experimentally demonstrate the potential of a simple photonic architecture to process information at unprecedented data rates, implementing a learning-based approach. A semiconductor laser subject to delayed self-feedback and optical data injection is employed to solve computationally hard tasks. We demonstrate simultaneous spoken digit and speaker recognition and chaotic time-series prediction at data rates beyond 1 Gbyte/s. We identify all digits with very low classification errors and perform chaotic time-series prediction with 10% error. Our approach bridges the areas of photonic information processing, cognitive and information science.
Many information processing challenges are difficult to solve with traditional Turing or von Neumann approaches. Implementing unconventional computational methods is therefore essential and optics provides promising opportunities. Here we experimentally demonstrate optical information processing using a nonlinear optoelectronic oscillator subject to delayed feedback. We implement a neuro-inspired concept, called Reservoir Computing, proven to possess universal computational capabilities. We particularly exploit the transient response of a complex dynamical system to an input data stream. We employ spoken digit recognition and time series prediction tasks as benchmarks, achieving competitive processing figures of merit.
Complex phenomena in photonics, in particular, dynamical properties of semiconductor lasers due to delayed coupling, are reviewed. Although considered a nuisance for a long time, these phenomena now open interesting perspectives. Semiconductor laser systems represent excellent test beds for the study of nonlinear delay-coupled systems, which are of fundamental relevance in various areas. At the same time delay-coupled lasers provide opportunities for photonic applications. In this review an introduction into the properties of single and two delay-coupled lasers is followed by an extension to network motifs and small networks. A particular emphasis is put on emerging complex behavior, deterministic chaos, synchronization phenomena, and application of these properties that range from encrypted communication and fast random bit sequence generators to bioinspired information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.