a b s t r a c tIn recent years several countries have set up policies that allow exchange of kidneys between two or more incompatible patient-donor pairs. These policies lead to what is commonly known as kidney exchange programs.The underlying optimization problems can be formulated as integer programming models. Previously proposed models for kidney exchange programs have exponential numbers of constraints or variables, which makes them fairly difficult to solve when the problem size is large. In this work we propose two compact formulations for the problem, explain how these formulations can be adapted to address some problem variants, and provide results on the dominance of some models over others. Finally we present a systematic comparison between our models and two previously proposed ones via thorough computational analysis. Results show that compact formulations have advantages over non-compact ones when the problem size is large.
Connectivity requirements are a common component of forest planning models, with important examples arising in wildlife habitat protection. In harvest scheduling models, one way of addressing preservation concerns consists of requiring that large contiguous patches of mature forest are maintained. In the context of nature reserve design, it is common practice to select a connected region of forest, as a reserve, in such a way as to maximize the number of species and habitats protected. Although a number of integer programming formulations have been proposed for these forest planning problems, most are impractical in that they fail to solve reasonably sized scheduling instances. We present a new integer programming methodology and test an implementation of it on five medium-sized forest instances publicly available in the Forest Management Optimization Site repository. Our approach allows us to obtain near-optimal solutions for multiple time-period instances in fewer than four hours.
Forest ecosystem management often requires spatially explicit planning because the spatial arrangement of harvests has become a critical economic and environmental concern. Recent research on exact methods has addressed both the design and the solution of forest management problems with constraints on the clearcut size, but where simultaneously harvesting two adjacent stands in the same period does not necessarily exceed the maximum opening size. Two main integer programming approaches have been proposed for this area restriction model. However, both encompass an exponential number of variables or constraints. In this work, we present a new integer programming model with a polynomial number of variables and constraints. Branch and bound is used to solve it. The model was tested with both real and hypothetical forests ranging from 45 to 1,363 polygons. Results show that the proposed model's solutions were within or slightly above 1% of the optimal solution and were obtained in a short computation time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.