Oxygen vacancies are ubiquitous in metal oxides and critical to performance, yet the impact of these states upon charge carrier dynamics important for photoelectrochemical and photocatalytic applications, remains contentious and poorly understood. A key challenge is the unambiguous identification of spectroscopic fingerprints which can be used to track their function. Herein, we employ five complementary techniques to modulate the electronic occupancy of states associated with oxygen vacancies in situ in BiVO4 photoanodes, allowing us to identify a spectral signature for the ionisation of these states. We obtain an activation energy of ̴ 0.2 eV for this ionisation process, with thermally activated electron de-trapping from these states determining the kinetics of electron extraction, consistent with improved photoelectrochemical performance at higher temperatures. Bulk, un-ionised states however, function as deep hole traps, with such trapped holes being energetically unable to drive water oxidation. These observations help address recent controversies in the literature over oxygen vacancy function, providing new insights into their impact upon photoelectrochemical performance.
Inspired by the outstanding optoelectronic properties reported for all-inorganic halide perovskite quantum dots (QDs), we have evaluated the potential of these materials toward the photocatalytic and photoelectrochemical degradation of organic compounds, taking the oxidation of 2-mercaptobenzothiazole (MBT) as a proof-of-concept. First, we determined electrochemically the energy levels of dispersions of perovskite QDs with different band gaps induced by the different ratios between halides (Br and I) and metallic cations (Pb and Sn). Then, we selected CsPbBr 3 QDs to demonstrate the photocatalytic and photoelectrochemical oxidation of MBT, confirming that hole injection takes place from CsPbBr 3 QDs to MBT, resulting in the total degradation of MBT as evidenced by electrospray mass spectrometry analyses. Although the stability and toxicity of these QDs are major issues to address in the near future, the results obtained in the present study open promising perspectives for the implementation of solar-driven catalytic strategies based on these fascinating materials.
Metal oxides and oxyhydroxides exhibit state-of-the-art activity for the oxygen evolution reaction (OER); however, their reaction mechanism, particularly the relationship between charging of the oxide and OER kinetics, remains elusive. Here, we investigate a series of Mn-, Co-, Fe-, and Zn-doped nickel oxides using operando UV–vis spectroscopy coupled with time-resolved stepped potential spectroelectrochemistry. The Ni2+/Ni3+ redox peak potential is found to shift anodically from Mn- < Co- < Fe- < Zn-doped samples, suggesting a decrease in oxygen binding energetics from Mn- to Zn-doped samples. At OER-relevant potentials, using optical absorption spectroscopy, we quantitatively detect the subsequent oxidation of these redox centers. The OER kinetics was found to have a second-order dependence on the density of these oxidized species, suggesting a chemical rate-determining step involving coupling of two oxo species. The intrinsic turnover frequency per oxidized species exhibits a volcano trend with the binding energy of oxygen on the Ni site, having a maximum activity of ∼0.05 s–1 at 300 mV overpotential for the Fe-doped sample. Consequently, we propose that for Ni centers that bind oxygen too strongly (Mn- and Co-doped oxides), OER kinetics is limited by O–O coupling and oxygen desorption, while for Ni centers that bind oxygen too weakly (Zn-doped oxides), OER kinetics is limited by the formation of oxo groups. This study not only experimentally demonstrates the relation between electroadsorption free energy and intrinsic kinetics for OER on this class of materials but also highlights the critical role of oxidized species in facilitating OER kinetics.
Unveiling the role of applied bias on the charge carrier dynamics in the WO3/BiVO4 junction during water oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.