The liposome-based and in situ gelling artificial tear formulation presented good tolerance and suitable properties for topical ophthalmic administration. It may be beneficial in the treatment of dry eye disease.
The combination of acetazolamide-loaded nano-liposomes and Hydroxypropyl methylcellulose (HPMC) with similar components to the preocular tear film in an osmoprotectant media (trehalose and erythritol) is proposed as a novel strategy to increase the ocular bioavailability of poorly soluble drugs. Ophthalmic formulations based on acetazolamide-loaded liposomes, dispersed in the osmoprotectant solution (ACZ-LP) or in combination with HPMC (ACZ-LP-P) were characterized and in vivo evaluated. The pH and tonicity of both formulations resulted in physiological ranges. The inclusion of HPMC produced an increment in viscosity (from 0.9 to 4.7 mPa·s. 64.9 ± 2.6% of acetazolamide initially included in the formulation was retained in vesicles. In both formulations, a similar onset time (1 h) and effective time periods were observed (7 h) after a single instillation (25 μL) in normotensive rabbits’ eyes. The AUC0–8h of the ACZ-LP-P was 1.5-fold higher than of ACZ-LP (p < 0.001) and the maximum hypotensive effect resulted in 1.4-fold higher (p < 0.001). In addition, the formulation of ACZ in the hybrid liposome/HPMC system produced a 30.25-folds total increment in ocular bioavailability, compared with the drug solution. Excellent tolerance in rabbits’ eyes was confirmed during the study.
Topical application of drops containing ocular drugs is the preferred non-invasive route to treat diseases that affect the anterior segment of the eye. However, the formulation of eye drops is a major challenge for pharmacists since the access of drugs to ocular tissues is restricted by several barriers. Acetazolamide (ACZ) is a carbonic anhydrase inhibitor used orally for the treatment of ocular hypertension in glaucoma. However, large ACZ doses are needed which results in systemic side effects. Recently, we synthesized copolymers based on 2-hydroxyethyl methacrylate (HEMA) and a functionalized three-arm poloxamer star (Bayfit-MA). The new material (HEMA/Bayfit-MA) was engineered to be transformed into nanoparticles without the use of surfactants, which represents a significant step forward in developing new ophthalmic drug delivery platforms. Acetazolamide-loaded nanocarriers (ACZ-NPs) were prepared via dialysis (224 ± 19 nm, −17.2 ± 0.4 mV). The in vitro release rate of ACZ was constant over 24 h (cumulative delivery of ACZ: 83.3 ± 8.4%). Following standard specifications, ACZ-NPs were not cytotoxic in vitro in cornea, conjunctiva, and macrophages. In normotensive rabbits, ACZ-NPs generated a significant intraocular pressure reduction compared to a conventional solution of ACZ (16.4% versus 9.6%) with the same dose of the hypotensive drug (20 µg). In comparison to previously reported studies, this formulation reduced intraocular pressure with a lower dose of ACZ. In summary, HEMA:Bayfit-MA nanoparticles may be a promising system for ocular topical treatments, showing an enhanced ocular bioavailability of ACZ after a single instillation on the ocular surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.