Background COVID-19 spread rapidly in Brazil despite the country's well established health and social protection systems. Understanding the relationships between health-system preparedness, responses to COVID-19, and the pattern of spread of the epidemic is particularly important in a country marked by wide inequalities in socioeconomic characteristics (eg, housing and employment status) and other health risks (age structure and burden of chronic disease). Methods From several publicly available sources in Brazil, we obtained data on health risk factors for severe COVID-19 (proportion of the population with chronic disease and proportion aged ≥60 years), socioeconomic vulnerability (proportions of the population with housing vulnerability or without formal work), health-system capacity (numbers of intensive care unit beds and physicians), coverage of health and social assistance, deaths from COVID-19, and state-level responses of government in terms of physical distancing policies. We also obtained data on the proportion of the population staying at home, based on locational data, as a measure of physical distancing adherence. We developed a socioeconomic vulnerability index (SVI) based on household characteristics and the Human Development Index. Data were analysed at the state and municipal levels. Descriptive statistics and correlations between state-level indicators were used to characterise the relationship between the availability of health-care resources and socioeconomic characteristics and the spread of the epidemic and the response of governments and populations in terms of new investments, legislation, and physical distancing. We used linear regressions on a municipality-by-month dataset from February to October, 2020, to characterise the dynamics of COVID-19 deaths and response to the epidemic across municipalities. Findings The initial spread of COVID-19 was mostly affected by patterns of socioeconomic vulnerability as measured by the SVI rather than population age structure and prevalence of health risk factors. The states with a high (greater than median) SVI were able to expand hospital capacity, to enact stringent COVID-19-related legislation, and to increase physical distancing adherence in the population, although not sufficiently to prevent higher COVID-19 mortality during the initial phase of the epidemic compared with states with a low SVI. Death rates accelerated until June, 2020, particularly in municipalities with the highest socioeconomic vulnerability. Throughout the following months, however, differences in policy response converged in municipalities with lower and higher SVIs, while physical distancing remained relatively higher and death rates became relatively lower in the municipalities with the highest SVIs compared with those with lower SVIs. Interpretation In Brazil, existing socioeconomic inequalities, rather than age, health status, and other risk factors for COVID-19, have...
Ultraviolet light printing inks are considered safer than the classical inks; however, despite being on the outer surface of the packaging material, their components can migrate into foodstuffs and can give rise to contamination. Photoinitiators are a part of the formulation of printing inks, being an important class of migrant, for which there have been more than 100 incidents of contamination of packaged food with photoinitiators reported through Rapid Alert System for Food and Feed (RASFF) alerts in the European Union. In this review the process of photo-polymerisation is explained in depth to provide an insight into the complexity of the process, and the diversity of potential contaminants together with their degradation products. The critical factors affecting the migration process itself are reviewed, together with analytical methods and the current legislation in the European Union and other parts of the world.
The aim of this paper was to characterize chitosan samples from the shrimp shells for the later development of antimicrobial active systems. These systems include 100 %\ud chitosan-based films obtained by casting, polyamide films with 5 and 10% of chitosan obtained by extrusion and\ud polyethylene/polyethylene terephthalate films with a coating\ud of 0.6 % of chitosan. For that purpose, several analytical\ud techniques including IR, 1H NMR, GPC, and microscopic\ud techniques (scanning electron microscopy and transmission\ud electron microscopy) were used. Within the studied samples, C1 showed the lowest DA and MW and consequently presented the most suitable properties for the development of an active packaging. Additionally, mechanical properties were performed. The effectiveness of the developed systems was evaluated by means of microbiological assays. The tested films showed antimicrobial capacity against coliform enterobacteria, mesophilic aerobic microorganism, and yeast\ud and moulds
Since the UV ink photoinitiator (PI) isopropylthioxanthone (ITX) was discovered in packaged milk, studies of print contamination have focused primarily on PIs but have also included amine synergists. Many other substances are used or formed during the print process, yet their identity and set-off properties have yet to be catalogued in food packaging. Three different techniques: direct analysis in real-time high-resolution mass spectrometry (DART-HRMS), gas chromatography-mass spectrometry (GC-MS) and ultra-high-pressure liquid chromatography electrospray ionisation/HRMS (UHPLC/ESI-HRMS) were used to detect and identify print-related molecules from the food-contact and print surfaces of three different packages with under-cured prints. This approach tentatively identified or confirmed 110 compounds, including 35 print-related molecules. The majority of compounds identified on food-contact surfaces were packaging monomers/byproducts, solvents/plasticisers, antioxidants/degradants or slip agents/lubricants. Of these, 28 showed evidence of set-off. The identities of 16 PIs, seven known scission products and five probable PI degradants were confirmed, most showing signs of set-off. Of the print-related molecules, at least five are novel print contaminants such as 4-morpholin-4-yl-benzaldehyde or 3-phenyl-2-benzofuran-1(3H)-one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.