Background: Pneumonia caused 704,000 deaths in children younger than 5 years in 2015. Zinc is an important micronutrient due to its role in immune function. Since 2004, WHO recommends zinc supplementation for children with diarrhea to shorten the duration and decrease severity. Zinc supplementation for children with pneumonia is controversial.Methods: A randomized controlled clinical trial was conducted, and 103 children 1 month to 5 years old with pneumonia were included. Zinc or placebo was given during hospitalization. Clinical symptoms were recorded, and a blood draw was obtained to determine serum zinc levels, lymphoproliferation, and cytokines at hospitalization and at discharge of the patient; a nasal wash was obtained to detect viral or bacterial pathogens by multiplex RT-PCR.Results: Zinc supplementation improved in fewer hours the clinical status (76 ± 7 vs. 105 ± 8, p = 0.01), the respiratory rate (37 ± 6 vs. 57 ± 7, p = 0.04), and the oxygen saturation (53 ± 7 vs. 87 ± 9, p = 0.007) compared to the placebo group. An increase in IFNγ and IL-2 after treatment in the zinc group was observed.Conclusions: Zinc supplementation improved some clinical symptoms in children with pneumonia in fewer hours and induced a cellular immune response.Clinical Trial Registration: The trial was retrospectively registered in ClinicalTrials.gov, identifier NCT03690583, URL https://clinicaltrials.gov/ct2/show/NCT03690583?term=zinc+children&cond=Pneumonia&draw=2&rank=1.
Background Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0–171.2] to 180.0 [135.4–227.9] mmHg and the ventilatory ratio from 1.73 [1.33–2.25] to 1.96 [1.61–2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01–1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01–1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93–1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation.
El SARS-CoV-2 es un nuevo tipo de coronavirus que posee un genoma de ARN monocatenario de sentido positivo, este virus se detectó por primera vez en diciembre de 2019 en la ciudad de Wuhan, China y causa la enfermedad que se denomina COVID-19. La tasa de mutación en los virus de ARN es extremadamente alta, el SARS-CoV-2 posee un mecanismo que corrige los errores en la replicación, por lo tanto, su tasa de mutación es menor. Sin embargo, a pesar de este mecanismo comete errores que generan un amplio espectro de mutaciones dentro de las cuales hay una población dominante, esto le confiere la capacidad de propagarse rápidamente, generando las variantes virales. Cuando surgen estas variantes se generan diferencias genéticas que en ocasiones no tienen efecto alguno, pero en otras le confieren un mayor potencial de transmisión, cargas virales más altas, mayor letalidad, además de permitirles evadir la respuesta inmunológica. En esta revisión presentamos el estado del arte de las nuevas variantes virales de SARS-CoV-2 reportadas hasta el momento en todo el mundo, así como sus características e impacto en la salud pública.
Purpose Although the prevalence of community-acquired respiratory bacterial coinfection upon hospital admission in patients with coronavirus disease 2019 (COVID-19) has been reported to be < 5%, almost three-quarters of patients received antibiotics. We aim to investigate whether procalcitonin (PCT) or C-reactive protein (CRP) upon admission could be helpful biomarkers to identify bacterial coinfection among patients with COVID-19 pneumonia. Methods We carried out a multicentre, observational cohort study including consecutive COVID-19 patients admitted to 55 Spanish intensive care units (ICUs). The primary outcome was to explore whether PCT or CRP serum levels upon hospital admission could predict bacterial coinfection among patients with COVID-19 pneumonia. The secondary outcome was the evaluation of their association with mortality. We also conducted subgroups analyses in higher risk profile populations. Results Between 5 February 2020 and 21 December 2021, 4076 patients were included, 133 (3%) of whom presented bacterial coinfection. PCT and CRP had low area under curve (AUC) scores at the receiver operating characteristic (ROC) curve analysis [0.57 (95% confidence interval (CI) 0.51–0.61) and 0.6 (95% CI, 0.55–0.64), respectively], but high negative predictive values (NPV) [97.5% (95% CI 96.5–98.5) and 98.2% (95% CI 97.5–98.9) for PCT and CRP, respectively]. CRP alone was associated with bacterial coinfection (OR 2, 95% CI 1.25–3.19; p = 0.004). The overall 15, 30 and 90 days mortality had a higher trend in the bacterial coinfection group, but without significant difference. PCT ≥ 0.12 ng/mL was associated with higher 90 days mortality. Conclusion Our study suggests that measurements of PCT and CRP, alone and at a single time point, are not useful for ruling in or out bacterial coinfection in viral pneumonia by COVID-19. Supplementary Information The online version supplementary material available at 10.1007/s00134-023-07161-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.