This paper discusses the suitability and the added value of Collage and Gridcole when contrasted with other solutions participating in the ICALT 2006 workshop titled "Comparing educational modelling languages on a case study." In this workshop each proposed solution was challenged to implement a Computer-Supported Collaborative Learning situation (CSCL) posed by the workshop's organizers. Collage is a pattern-based authoring tool for the creation of CSCL scripts compliant with IMS Learning Design (IMS LD). These IMS LD scripts can be enacted by the Gridcole tailorable CSCL system. The analysis presented in the paper is organized as a case study which considers the data recorded in the workshop discussion as well the information reported in the workshop contributions. The results of this analysis show how Collage and Gridcole succeed in implementing the scenario and also point out some significant advantages in terms of design reusability and generality, user-friendliness, and enactment flexibility.
Las simulaciones de barridos de parámetros tienen un gran potencial en el estudio de redes telemáticas, especialmente en contextos docentes. Sin embargo, el elevado tiempo necesario habitualmente para completar este tipo de simulaciones es una limitación importante para su uso. En este artículo se propone DNSE3, un entorno que permite la ejecución distribuida de tareas de simulación en el simulador ns-3 dentro de un entorno de nube computacional, a través de una arquitectura de servicios RESTful. El sistema se ha diseñado para ser autoescalable, aprovisionando y liberando dinámicamente recursos de la nube computacional en función de la carga de simulaciones demandada, y garantizando un reparto equitativo de los recursos entre los distintos usuarios. Además, DNSE3 se ha implementado reutilizando servicios presentes en \emph{middlewares} de nube populares, y ha sido evaluado mediante pruebas sintéticas. La implementación de DNSE3 ha demostrando un correcto comportamiento funcional y un rendimiento considerablemente superior a otras alternativas cuando el número de simulaciones es muy elevado.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.