Sandalwood essential oil (SEO) is extracted from Santalum trees. Although α-santalol, a main constituent of SEO, has been studied as a chemopreventive agent, the genotoxic activity of the whole oil in human breast cell lines is still unknown. The main objective of this study was to assess the cytotoxic and genotoxic effects of SEO in breast adenocarcinoma (MCF-7) and nontumorigenic breast epithelial (MCF-10A) cells. Proteins associated with SEO genotoxicity were identified using a proteomics approach. Commercially available, high-purity, GC/MS characterized SEO was used to perform the experiments. The main constituents reported in the oil were (Z)-α-santalol (25.34%), (Z)-nuciferol (18.34%), (E)-β-santalol (10.97%), and (E)-nuciferol (10.46%). Upon exposure to SEO (2–8 μg/mL) for 24 hours, cell proliferation was determined by the MTT assay. Alkaline and neutral comet assays were used to assess genotoxicity. SEO exposure induced single- and double-strand breaks selectively in the DNA of MCF-7 cells. Quantitative LC/MS-based proteomics allowed identification of candidate proteins involved in this response: Ku70 (p = 1.37E − 2), Ku80 (p = 5.8E − 3), EPHX1 (p = 3.3E − 3), and 14-3-3ζ (p = 4.0E − 4). These results provide the first evidence that SEO is genotoxic and capable of inducing DNA single- and double-strand breaks in MCF-7 cells.
The single-cell gel/comet assay is an electrophoretic technique used to detect single-strand breaks in DNA. Damage is assessed examining individual cells under an epifluorescent microscope. UV-induced DNA damage consists mostly of the formation of pyrimidine dimers; therefore, most of the damage cannot be detected using a standard comet assay. The enzyme T4 endonuclease V breaks DNA strands at sites of pyrimidine dimers. The main objective of this work is to evaluate the comet assay to detect UV-induced damage in DNA after an initial treatment of cells with T4 endonuclease V. This work was conducted on Rhodomonas sp. (Cryptophyta), a marine unicellular flagellate. Cells of Rhodomonas sp. were exposed to 12 h visible + ultraviolet-A + ultraviolet-B (VIS + UVA + UVB) and VIS (control), with and without T4 endonuclease V. Cells exposed to VIS + UVA + UVB showed approximately 200% more damage than control if these were treated with T4 endonuclease V. Rhodomonas sp. were exposed to 3, 6, 9 and 12 h of VIS, VIS + UVA and VIS + UVA + UVB. Damage induced by VIS + UVA + UVB as detected by the comet assay increased along with exposure time. However, damage caused by VIS and VIS + UVA remained relatively constant at all times. Results of this study indicate that the comet assay is more sensitive to UV radiation damage when used in conjunction with T4 endonuclease V. This modification of the comet assay can be used as an alternative technique to detect DNA damage in single cells caused by UV radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.