Recent results from direct and indirect searches for dark matter (DM) have motivated the study of particle physics models that can provide weakly interacting massive particles (WIMPs) in the mass range 1 − 50 GeV. Viable candidates for light WIMP DM must fulfil stringent constraints. On the one hand, the observation at the LHC of a Higgs boson with Standard Model properties set an upper bound on the coupling of light DM particles to the Higgs, thereby making it difficult to reproduce the correct relic abundance. On the other hand, the recent results from direct searches in the CDMSlite, SuperCDMS and LUX experiments have set upper constraints on the DM scattering cross section. In this paper, we investigate the viability of light right-handed sneutrino DM in the Next-to-Minimal Supersymmetric Model (NMSSM) in the light of these constraints. To this aim, we have carried out a scan in the NMSSM parameter space, imposing experimental bounds on the Higgs sector and low-energy observables, such as the muon anomalous magnetic moment and branching ratios of rare decays. We demonstrate that the enlarged Higgs sector of the NMSSM, together with the flexibility provided by the RH sneutrino parameters, make it possible to obtain viable RH sneutrino DM with a mass as light as 2 GeV. We have also considered the upper bounds on the annihilation cross section from Fermi LAT data on dwarf spheroidal galaxies, and extracted specific examples with mass in the range 8 − 50 GeV that could account for the apparent low-energy excess in the gamma-ray emission at the Galactic Centre. Then, we have computed the theoretical predictions for the elastic scattering cross-section of RH sneutrinos. Finally, after imposing the recent bounds from SuperCDMS and LUX, we have found a wide area of the parameter space that could be probed by future low-threshold direct detection experiments.a MultiDark Scholar
We derive constraints on parameters of generic dark matter candidates by comparing theoretical predictions with the gamma-ray emission observed by the Fermi -LAT from the region around the Galactic Center. Our analysis is conservative since it simply requires that the expected dark matter signal does not exceed the observed emission. The constraints obtained in the likely case that the collapse of baryons to the Galactic Center is accompanied by the contraction of the dark matter are strong. In particular, we find that for bb and τ + τ − or W + W − dark matter annihilation channels, the upper limits on the annihilation cross section imply that the thermal cross section is excluded for a Weakly Interacting Massive Particle (WIMP) mass smaller than about 700 and 500 GeV, respectively. For the µ + µ − channel, where the effect of the inverse Compton scattering is important, depending on models of the Galactic magnetic field the exclusion of the thermal cross-section is for a WIMP mass smaller than about 150 to 400 GeV. The upper limits on the annihilation cross section of dark matter particles obtained are two orders of magnitude stronger than without contraction. In the latter case our results are * MultiDark Fellow
We study the effect that uncertainties in the nuclear spin-dependent structure functions have in the determination of the dark matter (DM) parameters in a direct detection experiment.We show that different nuclear models that describe the spin-dependent structure function of specific target nuclei can lead to variations in the reconstructed values of the DM mass and scattering cross section. We propose a parametrization of the spin structure functions that allows us to treat these uncertainties as variations of three parameters, with a central value and deviation that depend on the specific nucleus. The method is illustrated for germanium and xenon detectors with an exposure of 300 kg yr, assuming a hypothetical detection of DM and studying a series of benchmark points for the DM properties. We find that the effect of these uncertainties can be similar in amplitude to that of astrophysical uncertainties, especially in those cases where the spin-dependent contribution to the elastic scattering cross section is sizableD. G. C. is supported by the Ramo´n y Cajal program of the Spanish MICINN. M. F. is supported by a Leverhulme Trust grant. J.-H. H. is supported by a MultiDark Fellowship. M. P. is supported by a MultiDark Scholarship. This work was supported by the Consolider-Ingenio 2010 Programme under MultiDark Grant No. CSD2009-00064. We also thank the support of the Spanish MICINN under Grants No. FPA2009-08958 and FPA2012-34694, the Spanish MINECO ‘‘Centro de excelencia Severo Ochoa Program’’ under Grant No. SEV-2012-0249, the Community of Madrid under Grant No. HEPHACOS S2009/ESP-1473, and the European Union under the Marie Curie-ITN Program No. PITN-GA-2009-23792
Citation for published item:gerde£ noD hvid qF nd eir¡ oD wiguel nd olesD ndr @PHISA 9pits to the permiEve qe exess with rightEhnded sneutrino drk mtter X implitions for diret nd indiret drk mtter serhes nd the vrgF9D hysil review hFD WI @IPAF pF IPQSQHF Further information on publisher's website: Reprinted with permission from the American Physical Society: Physical Review D 91, 123530 c 2015 by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modied, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society. Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. We show that the right-handed (RH) sneutrino in the next-to-minimal supersymmetric standard model can account for the observed excess in the Fermi-LAT spectrum of gamma rays from the Galactic center, while fulfilling all the current experimental constraints from the LHC as well as from direct and indirect dark matter searches. We have explored the parameter space of this scenario, computed the gamma-ray spectrum for each phenomenologically viable solution and then performed a χ 2 fit to the excess. Unlike previous studies based on model-independent interpretations, we have taken into account the full annihilation spectrum, without assuming pure annihilation channels. Furthermore, we have incorporated limits from direct detection experiments, LHC bounds and also the constraints from Fermi-LAT on dwarf spheroidal galaxies and gamma-ray spectral lines. In addition, we have estimated the effect of the most recent Fermi-LAT reprocessed data (pass 8). In general, we obtain good fits to the Galactic center excess (GCE) when the RH sneutrino annihilates mainly into pairs of light singletlike scalar or pseudoscalar Higgs bosons that subsequently decay in flight, producing four-body final states and spectral features that improve the goodness of the fit at large energies. The best fit (χ 2 ¼ 20.8) corresponds to a RH sneutrino with a mass of 64 GeV which annihilates preferentially into a pair of light singletlike pseudoscalar Higgs bosons (with masses of order 60 GeV). Besides, we have analyzed other channels that also provide good fits to the excess. Finally, we discuss the implications for direct and indirect detection searches paying special attention to the possible appearanc...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.