Immersive environments such as Virtual Reality (VR) are now a main area of interactive digital entertainment. The challenge to design personalized interactive VR systems is specifically to guide and adapt to the user's attention. Understanding the connection between the visual content and the human attentional process is therefore key. In this article, we investigate this connection by first proposing a new head motion predictor named HeMoG. HeMoG is a white-box model built on physics of rotational motion and gravitation. Second, we compare HeMoG with existing reference Deep Learning models. We show that HeMoG can achieve similar or better performance and provides insights on the inner workings of these black-box models. Third, we study HeMoG parameters in terms of video categories and prediction horizons to gain knowledge on the connection between visual saliency and the head motion process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.