Abstract. Numerous studies have shown that atmospheric conditions affect wind turbine performance; however, some findings have exposed conflicting results for different locations and diverse analysis methodologies. In this study, we explore how the change in wind direction with height (direction wind shear), a site-differing factor between conflicting studies, and speed shear affect wind turbine performance. We utilized lidar and turbine data collected from the 2013 Crop Wind Energy eXperiment (CWEX) project between June and September in a wind farm in north-central Iowa. Wind direction and speed shear were found to follow a diurnal cycle; however, they evolved differently with increasing wind speeds. Using a combination of speed and direction shear values, we found large direction and small speed shear to result in underperformance. We further analyzed the effects of wind veering on turbine performance for specific values of speed shear and found detrimental conditions on the order of 10 % for wind speed regimes predominantly located in the middle of the power curve. Focusing on a time period of ramping electricity demand (06:00–09:00 LT – local time) exposed the fact that large direction shear occurred during this time and undermined turbine performance by more than 10 %. A predominance of clockwise direction shear (wind veering) cases compared to counterclockwise (wind backing) was also observed throughout the campaign. Moreover, large veering was found to have greater detrimental effects on turbine performance compared to small backing values. This study shows that changes in wind direction with height should be considered when analyzing turbine performance.
Abstract. Numerous studies have shown that atmospheric conditions affect wind turbine performance, however, some findings have exposed conflicting results for different locations and diverse analysis methodologies. In this study, we explore how the change in wind direction with height (direction wind shear), a site-differing factor between conflicting studies, affects wind turbine performance. We utilized lidar and turbine data collected from the 2013 Crop Wind Energy eXperiment (CWEX) project between June and September in a wind farm in north-central Iowa. Directional wind shear was found to follow a diurnal cycle and to monotonically decrease with increasing wind speeds. Using different thresholds to distinguish between high- and low-directional wind shear scenarios, we found that larger thresholds evidence statistically-significant effects on turbine power production for lower wind speeds. We further analyzed a threshold of 0.225 deg m−1 and found turbine underperformance in the order of 10 % for wind speed regimes below 8 m s−1. Considering a time period of ramping electricity demand (05:30–09:00 LT) exposed the fact that large direction shear occurs during this time and is undermining turbine performance by more than 10 %. A predominance of clockwise direction shear (wind veering) cases compared to counterclockwise (wind backing) was also observed throughout the campaign. Moreover, large veering was found to have greater detrimental effects on turbine performance compared to small backing values. This study shows that changes in wind direction with height should be considered when analyzing turbine performance, however, future work on segregating speed and direction shear should be pursued to quantify the effects of only one factor on turbine power production.
Abstract. Wind plant blockage reduces the wind velocity upstream undermining turbine performance for the first row of the plant. We assess how atmospheric stability modifies the induction zone of a wind plant in flat terrain. We also explore different approaches to quantifying the magnitude and extent of the induction zone from field-like observations. To investigate the influence from atmospheric stability, we compare simulations of two stable boundary layers using the Weather Research and Forecasting model in large-eddy simulation mode, representing wind turbines using the generalized actuator disk approach. We find a faster cooling rate at the surface, which produces a stronger stably stratified boundary layer, amplifies the induction zone of both an isolated turbine and of a large wind plant. A statistical analysis on the hub-height wind speed field shows wind slowdowns only extend far upstream (up to 15D) of a wind plant in strong stable boundary layers. To evaluate different ways of measuring wind plant blockage from field-like observations, we consider various ways of estimating the freestream velocity upstream of the plant. Sampling a large area upstream is the most accurate approach to estimating the freestream conditions, and thus of measuring the blockage effect. Also, the choice of sampling method may induce errors of the same order as the velocity deficit in the induction zone.
Abstract. The International Society for Atmospheric Research using Remotely-piloted Aircraft (ISARRA) hosted a flight week in July 2018 to demonstrate Unmanned Aircraft Systems’ (UAS) capabilities in sampling the atmospheric boundary layer. This week-long experiment was called the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. Numerous remotely piloted aircrafts and ground-based instruments were deployed with the objective of capturing meso- and microscale phenomena in the atmospheric boundary layer. The University of Oklahoma deployed one Halo Streamline lidar and the University of Colorado Boulder deployed two Windcube lidars. In this paper, we use data collected from these Doppler lidars to estimate turbulence dissipation rate throughout the campaign. We observe large temporal variability of turbulence dissipation close to the surface with the Windcube lidars that is not detected by the Halo Streamline. However, the Halo lidar enables estimating dissipation rate within the whole boundary layer, where a diurnal variability emerges. We also find a higher correspondence in turbulence dissipation between the Windcube lidars, which are not co-located, compared to the Halo and Windcube lidar that are co-located, suggesting a significant influence of measurement volume on the retrieved values of dissipation rate. This dataset have been submitted to Zenodo (Sanchez Gomez and Lundquist, 2020) for free and open access (https://doi.org/10.5281/zenodo.4399967).
Abstract. Wind plants slow down the approaching wind, a phenomenon known as blockage. Wind plant blockage undermines turbine performance for front-row turbines and potentially for turbines deeper into the array. We use large-eddy simulations to characterize blockage upstream of a finite-size wind plant in flat terrain for different atmospheric stability conditions and investigate the physical mechanisms modifying the flow upstream of the turbines. To examine the influence of atmospheric stability, we compare simulations of two stably stratified boundary layers using the Weather Research and Forecasting model in large-eddy simulation mode, representing wind turbines using the generalized actuator disk approach. For a wind plant, a faster cooling rate at the surface, which produces stronger stably stratified flow in the boundary layer, amplifies blockage. As a novelty, we investigate the physical mechanisms amplifying blockage by evaluating the different terms in the momentum conservation equation within the turbine rotor layer. The velocity deceleration upstream of a wind plant is caused by an adverse pressure gradient and momentum advection out of the turbine rotor layer. The cumulative deceleration of the flow upstream of the front-row turbines instigates vertical motions. The horizontal flow is diverted vertically, reducing momentum availability in the turbine rotor layer. Although the adverse pressure gradient upstream of the wind plant remains unchanged with atmospheric stability, vertical advection of horizontal momentum is amplified in the more strongly stable boundary layer, mainly by larger shear of the horizontal velocity, thus increasing the blockage effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.