In the era of the Internet of Things (IoT), billions of wirelessly connected embedded devices rapidly became part of our daily lives. As a key tool for each Internet-enabled object, embedded operating systems (OSes) provide a set of services and abstractions which eases the development and speedups the deployment of IoT solutions at scale. This article starts by discussing the requirements of an IoT-enabled OS, taking into consideration the major concerns when developing solutions at the network edge, followed by a deep comparative analysis and benchmarking on Contiki-NG, RIOT, and Zephyr. Such OSes were considered as the best representative of their class considering the main key-points that best define an OS for resource-constrained IoT devices: low-power consumption, real-time capabilities, security awareness, interoperability, and connectivity. While evaluating each OS under different network conditions, the gathered results revealed distinct behaviors for each OS feature, mainly due to differences in kernel and network stack implementations.
In the new Internet of Things (IoT) era, embedded Field-Programmable Gate Array (FPGA) technology is enabling the deployment of custom-tailored embedded IoT solutions for handling different application requirements and workloads. Combined with the open RISC-V Instruction Set Architecture (ISA), the FPGA technology provides endless opportunities to create reconfigurable IoT devices with different accelerators and coprocessors tightly and loosely coupled with the processor. When connecting IoT devices to the Internet, secure communications and data exchange are major concerns. However, adding security features requires extra capabilities from the already resource-constrained IoT devices. This article presents the FAC-V coprocessor, which is an FPGA-based solution for an RISC-V processor that can be deployed following two different coupling styles. FAC-V implements in hardware the Advanced Encryption Standard (AES), one of the most widely used cryptographic algorithms in IoT low-end devices, at the cost of few FPGA resources. The conducted experiments demonstrate that FAC-V can achieve performance improvements of several orders of magnitude when compared to the software-only AES implementation; e.g., encrypting a message of 16 bytes with AES-256 can reach a performance gain of around 8000× with an energy consumption of 0.1 μJ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.