This study aimed to develop and compare single and multiple 3D models such as multicellular tumor spheroids and to investigate the influence of Matrigel on their morphological and functional behavior. MDA-MB-231 3D models were generated in the presence and absence of Matrigel and their key biological properties within 6 days of culture were monitored. Our results revealed the formation of well-defined 3D models in the presence of Matrigel, with a uniform morphology, increased diameter, good circularity, and increased expression of a proliferation marker (PCNA). In comparison, 3D models generated without Matrigel were characterized by an irregular border, reduced dimensions and circularity, and a decrease of PCNA expression. Similarities between the single and multiple 3D cultures were found in their viability, Nrf2 expression, and glutathione (GSH) content. The influence of Matrigel on MDA-MB-231 spheroids metabolism under hypoxic conditions was highlighted by released lactate dehydrogenase and nitric oxide, GSH levels and expression of Nrf2 and Hsp70 proteins. Based on the increased expression of PCNA and the development of the hypoxia process in the presence of extracellular matrix, our study showed that the addition of Matrigel improves the growing environment of tumor spheroids, making it closer to that of in vivo tumor conditions.
Abstract:We report the synthesis of dextran-coated iron oxide magnetic nanoparticles (DIO-NPs) with spherical shape and uniform size distribution as well as their accumulation and toxic effects on Jurkat cells up to 72 h. The characterization of dextran-coated maghemite nanoparticles was done by X-ray diffraction and dynamic light scattering analyses, transmission electron microscopy imaging, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, magnetic hysteresis, and relaxometry measurements. The quantification of DIO-NPs intracellular uptake showed a progressive accumulation of iron as a function of time and dose accompanied by additional lysosome formation and an increasing darkening exhibited by a magnetic resonance imaging (MRI) scanner. The cytotoxicity assays revealed a decrease of cell viability and a loss of membrane integrity in a time-and dose-dependent manner. Exposure to DIO-NPs determined an increase in reactive oxygen species level up to 72 h. In the first two days of exposure, the level of reduced glutathione decreased and the amount of malondyaldehyde increased, but at the end of the experiment, their concentrations returned to control values. These nanoparticles could be used as contrast agents for MRI but several parameters concerning their interaction with the cells should be taken into consideration for a safe utilization.
In this paper we developed a method for multiwalled carbon nanotubes (MWCNTs) use as carriers for a drug based on platinum in breast cancer therapy. The method of functionalization involves the carboxyl functionalization of nanotubes and encapsulation of cisplatin (CDDP) into MWCNTs. The biological properties of MWCNTs loaded with CDDP (MWCNT-COOH-CDDP) and of individual components MWCNT-COOH and free CDDP were evaluated on MDA-MB-231 cells. Various concentrations of CDDP (0.316–2.52 µg/mL) and MWCNTs (0.5–4 µg/mL) were applied on cells for 24 and 48 h. Only at high doses of CDDP (1.26 and 2.52 µg/mL) and MWCNT-COOH-CDDP (2 and 4 µg/mL) cell morphological changes were observed. The cellular viability decreased only with approx. 40% after 48 h of exposure to 2.52 µg/mL CDDP and 4 µg/mL MWCNT-COOH-CDDP despite the high reactive oxygen species (ROS) production induced by MWCNTs starting with 24 h. After 48 h, ROS level dropped as a result of the antioxidant defence activation. We also found a significant decrease of caspase-3 and p53 expression after 48 h, accompanied by a down-regulation of NF-κB in cells exposed to MWCNT-COOH-CDDP system which promotes apoptosis escape and thus failing to overcome the triple negative breast cancer (TNBC) cells resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.