This work presents an analysis of low-visibility event persistence and prediction at Villanubla Airport (Valladolid, Spain), considering Runway Visual Range (RVR) time series in winter. The analysis covers long- and short-term persistence and prediction of the series, with different approaches. In the case of long-term analysis, a Detrended Fluctuation Analysis (DFA) approach is applied in order to estimate large-scale RVR time series similarities. The short-term persistence analysis of low-visibility events is evaluated by means of a Markov chain analysis of the binary time series associated with low-visibility events. We finally discuss an hourly short-term prediction of low-visibility events, using different approaches, some of them coming from the persistence analysis through Markov chain models, and others based on Machine Learning (ML) techniques. We show that a Mixture of Experts approach involving persistence-based methods and Machine Learning techniques provides the best results in this prediction problem.
Peripheral arterial disease (PAD) is an artherosclerotic occlusive disorder of distal arteries, which can give rise to the intermittent claudication (IC) phenomenon, i.e., limb pain and necessity to stop. PAD patients with IC have altered their gait, increasing the fall risk. Several gait analysis works have studied acceleration signals (from sensors) to characterize the gait. One common technique is spectral analysis. However, this approach mainly uses dominant frequency (fd) to characterize gait patterns, and in a narrow spectral band, disregarding the full spectra information. We propose to use a full band spectral analysis (up to 15 Hz) and the fundamental frequency (f0) in order to completely characterize gait for both control subjects and PAD patients. Acceleration gait signals were recorded using an acquisition equipment consisting of four wireless sensor nodes located at ankle and hip height on both sides. Subjects had to walk, free-fashion, up to 10 min. The analysis of the periodicity of the gait acceleration signals, showed that f0 is statistically higher (p < 0.05) in control subjects (0.9743 ± 0.0716) than in PAD patients (0.8748 ± 0.0438). Moreover, the spectral envelope showed that, in controls, the power spectral density distribution is higher than in PAD patients, and that the power concentration is hither around the fd. In conclusion, full spectra analysis allowed to better characterize gait in PAD patients than classical spectral analysis. It allowed to better discriminate PAD patients and control subjects, and it also showed promising results to assess severity of PAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.