Accurate information about fluid distribution in different compartments of the human body is very important in various areas of medicine like drug dosage, renal replacement therapy, nutritional support, coronary artery disease, colorectal cancer and HIV infection. The body impedance analysis method being simple, inexpensive, accurate and noninvasive is largely used to this end. Several models of the body impedance are presented in this chapter. The first is the Cole model, a linear, firstorder RC circuit valid for a frequency range of two decades. Another model, developed by De Lorenzo, employs a fractional-order impedance whose parameters are identified using the frequency characteristics of the impedance module and can be used for a frequency range of three decades. In addition, two other models are presented, a ladder RC model valid for a frequency range of two decades and its extension to three decades, as well as a circuit containing multiple RC branches connected in parallel. These two models are obtained by approximating the measured body admittance modulus with a physically realizable circuit function followed by the circuit synthesis. The last model can be simplified, its simplest form being the Cole model. Allowing a better prediction of the intracellular and extracellular water volumes, this model can be viewed as an extension of the Cole model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.