As Industry 4.0 networks continue to evolve at a rapid pace, they are becoming increasingly complex and distributed. These networks incorporate a range of technologies that are integrated into smart manufacturing systems, requiring adaptability, security, and resilience. However, managing the complexity of Industry 4.0 networks presents significant challenges, particularly in terms of security and the integration of diverse technologies into a functioning and efficient infrastructure. To address these challenges, emerging digital twin standards are enabling the connection of various systems by linking individual digital twins, creating a system of systems. The objective is to develop a “universal translator” that can interpret inputs from both the real and digital worlds, merging them into a seamless cyber-physical reality. It will be demonstrated how the myriad of technologies and systems in Industry 4.0 networks can be connected through the use of digital twins to create a seamless “system of systems”. This will improve interoperability, resilience, and security in smart manufacturing systems. The paper will also outline the potential benefits and limitations of digital twins in addressing the challenges of Industry 4.0 networks.
The recent increase in computational capability has led to an unprecedented increase in the range of new applications where machine learning can be used in real time. Notwithstanding the range of use cases where automation is now feasible, humans are likely to retain a critical role in the operation and certification of manufacturing systems for the foreseeable future. This paper presents a use case review of how human operators affect the performance of cyber–physical systems within a ’smart’ or ’cognitive’ setting. Such applications are classified using Industry 4.0 (I4.0) or 5.0 (I5.0) terminology. The authors argue that, as there is often no general agreement as to when a specific use case moves from being an I4.0 to an I5.0 example, the use of a hybrid Industry X.0 notation at the intersection between I4.0 and I5.0 is warranted. Through a structured review of the literature, the focus is on how secure human-mediated autonomous production can be performed most effectively to augment and optimise machine operation.
High performance networking is at the core of every industrial system, as more and more companies look inwards towards the digital transformation of their entire manufacturing environment. The driving factor for all these changes is Industry 4.0, there are many options for communication systems for the latest generations of hardware with one of the most promising technologies being private 5G networks. A smart automation use case will be implemented using private 5G as the communication backbone, the performance of this communication type will be compared to other communication types that were historically used within smart automation and manufacturing settings. Performance metrics will be compared to show typical performance that may be expected when deploying a private 5G communication network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.