Gold(I) complexes are the most active catalysts for alkoxy- or hydroxycyclization and for skeletal rearrangement reactions of 1,6-enynes. Intramolecular alkoxycyclizations also proceed efficiently in the presence of gold(I) catalysts. The first examples of the skeletal rearrangement of enynes by the endocyclic cyclization pathway are also documented. Iron(III) is also able to catalyze exo and endo skeletal rearrangements of 1,6-enynes, although the scope of this transformation is more limited. The gold(I)-catalyzed endocyclic cyclization proceeds by a mechanism different from those followed in the presence of PdII, HgII, or RhI catalysts.
Gold(I)-catalyzed addition of carbon nucleophiles to 1,6-enynes gives two different type of products by reaction at the cyclopropane or at the carbene carbons of the intermediate cyclopropyl gold carbenes. The 5-exo-dig cyclization is followed by most 1,6-enynes, although those bearing internal alkynes and alkenes react by the 6-endo-dig pathway. The cyclopropane versus carbene site-selectivity can be controlled in some cases by the ligand on the gold catalyst. In addition to electron-rich arenes and heteroarenes, allylsilanes and 1,3-dicarbonyl compounds can be used as the nucleophiles. In the reaction of 1,5-enynes with carbon nucleophiles, the 5-endo-dig pathway is preferred.
Complexes [AuCl{C(NHR)(NHR 0 )}] and [AuCl{C(NHR)(NEt 2 )}] (R= t Bu, p-Tol, Xylyl, p-C 6 H 4 -COOH, p-C 6 H 4 COOEt, R 0 = Me, n Bu, i Pr, n heptyl, p-Tol) have been prepared by reaction of the corresponding isocyanogold complexes [AuCl(CNR)] with either primary amines or diethylamine. All the prepared carbenes are reactive and highly selective catalysts for skeletal rearrangement, methoxycyclization of 1,6-enynes, and other mechanistically related gold-catalyzed transformations. Overall, these easily accessible nitrogen acyclic carbene (NAC) gold complexes were not second to NHC complexes and were advantageous to obtain different products.
Sulfoxide-alkene hybrids are introduced as a new class of chiral heterodentate ligands for the Hayashi-Miyaura reaction. The synthesis of these ligands was achieved without the use of protecting groups. A chiral resolution was performed via simple column-chromatographic separation of the diastereomeric ligands. Both diastereomers proved to be excellent ligands in Rh-catalyzed 1,4-addition reactions, furnishing chiral products with high enantioselectivities and, remarkably, opposite stereoconfigurations.
Textbook revision: Allylboronic acids, which are easily prepared from allylic alcohols, react readily and selectively with ketones without Lewis acid catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.