Small semiconductor devices can be separated into regions where the electron transport has classical character, neighboring with regions where the transport requires a quantum description. The classical transport picture is associated with Boltzmann-like particles that evolve in the phase-space defined by the wave vector and real space coordinates. The evolution consists of consecutive processes of drift over Newton trajectories and scattering by phonons. In the quantum regions, a convenient description of the transport is given by the Wigner-function formalism. The latter retains most of the basic classical notions, particularly, the concepts for phase-space and distribution function, which provide the physical averages. In this work we show that the analogy between classical and Wigner transport pictures can be even closer. A particle model is associated with the Wigner-quantum transport. Particles are associated with a sign and thus become positive and negative. The sign is the only property of the particles related to the quantum information. All other aspects of their behavior resemble Boltzmann-like particles. The sign is taken into account in the evaluation of the physical averages. The sign has a physical meaning because positive and negative particles that meet in the phase space annihilate one another. The Wigner and Boltzmann transport pictures are explained in a unified way by the processes drift, scattering, generation, and recombination of positive and negative particles. The model ensures a seamless transition between the classical and quantum regions. A stochastic method is derived and applied to simulation of resonant-tunneling diodes. Our analysis shows that the method is useful if the physical quantities do not vary over several orders of magnitude inside a device.
Abstract.
The Wigner equation is a promising full quantum model for the simulation
of nanodevices. It is also a challenging numerical problem. Two basic Monte Carlo
approaches to this model exist exploiting, in the time-dependent case,
the so-called particle affinity and, in the stationary case, integer
particle signs. In this paper we extend the second approach for time-dependent simulations and present a validation against a well-known
benchmark model, the Schrödinger equation. Excellent quantitative
agreement is demonstrated by the compared results despite the very
different numerical properties of the utilized stochastic and
deterministic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.