In this work analysis, modernization and software implementation and an algorithm for thermodynamic calculation on the basis of the Benedikt-Webb-Rubin actual gas equation are performed. The work includes writing, analysis and modernization of the real gas thermodynamic calculation program. In the first part of the work data were processed to calculate real gas. In the second part, the development of the algorithm for thermodynamic calculation and its modifications is carried out. In the third part, the analysis of this algorithm is performed, revealing the main shortcomings and limits of applicability. In the fourth part of the work, the algorithm was implemented in the form of computational modules and programs, and also practical testing of these programs in the calculation of gas compressor and auxiliary equipment.
In this work, a study was made of methods for converting a real gas from a full-scale compressor to a model one for low-temperature pure methane using the equations of state of a real gas Benedict-Webb-Rubin and Peng-Robinson. In the course of the work, the features of recalculation methods were studied, a model of an air compressor was selected, corresponding in parameters to a model of a low-temperature methane compressor using the theory of similarity, using similarity criteria. Also, in this work, the features of the application of various equations of state were studied when describing the model of a low-temperature methane compressor, as well as the features that arise when this model is converted to an air model analogue. Data were obtained on the possibility of applying the proposed methods on real units, and the invariance of the method with respect to the used equations of state of a real gas for pure methane at temperatures from 150 to 300 K and a division of 0.2 MPa was proved. At the final stage of the work, comparative characteristics of two models of natural methane compressors were obtained, based on different equations of real gas, describing the medium and two models of model compressors using air as a working medium and being model analogs of the above units.
A study of real gas state equations Peng–Robinson and GERG-2008 with respect to calculation of Freons R404A, R408A and R410A has been carried out. Four Freon parameters are calculated during the study: saturated vapor pressure at the saturation line at some Freon temperature, Freon density at saturation pressure and some temperature, enthalpy and entropy at the same pressures and temperature. The data obtained from the calculation of Freon by the above equations are compared with the experimental data for each of the above Freons. As a result of this work, data have been obtained to evaluate the accuracy of the Peng–Robinson and GERG-2008 equations of state for each of the three CFCs, to evaluate the effectiveness of these equations, and to provide recommendations for the calculation and application of these equations in the design and mathematical modelling of refrigeration machines
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.