The cerebral projection of vestibular signaling was studied by using PET with a special differential experimental protocol. Caloric vestibular stimulation (CVS)-induced regional cerebral blood flow (rCBF) changes were investigated in two populations. Butanol perfusion scans were carried out on six healthy volunteers and on six patients following the removal of tumors from the right cerebello pontine angle. The complete loss of the vestibular function postoperatively allowed a comparison of the rCBF changes in the populations with or without this input and offered a promising functional approach whereby to delineate the cortical region most responsive to pure vestibular input. The activations by left-sided and right-sided CVS were determined for both the healthy volunteers and the patient population. Statistical analysis of the data obtained following left-sided CVS did not reveal any cerebral region for which there was a significant difference in CVS-induced response by these two populations. In the case of right-sided CVS, however, the statistical comparison of the CVS-related responses demonstrated a single contralateral area characterized by a significantly different degree of response. This cortical area corresponds to part of the cortical region described recently which can be activated by both CVS and neck vibration. It appears to be anatomically identical to the aggregate of the somatosensory area SII and the retroinsular cortex described in primates, a region identified by other investigators as an analog of the parietoinsular vestibular cortex.
We are the first to point out the functional connection between the hippocampus and the vestibular system in this report.
There are a number of well-known stimulation methods for the investigation of the central projection of the vestibular system. In addition to optokinetic, galvanic and neck vibration tests, the most widespread method is caloric stimulation. These listed methods cause not only vestibular, but also other effects on the central nervous system (CNS) (acoustic, tactile and nociceptive). In this paper, positron emission tomography (PET) was used to investigate whether caloric stimulation contains a non-vestibular (extravestibular) component, which would cause a distortion in the cortical activity and therefore in the vestibular effect on the CNS. Caloric stimulation was carried out in six patients who had been operated on due to cerebello-pontine angle tumour. These patients suffered post-operatively from a complete lesion of the vestibular system and anacusis on the operated side. Ipsilaterally activated areas were the inferior pole of the post-central gyrus and temporoparietal junction, caudal part of the post-central gyrus (SI, SII), inferior parietal lobule and medial frontal gyrus. Contralaterally activated areas were the anterior cingulate gyrus, medial frontal gyrus, posterior part of the insula, post-central gyrus and temporoparietal junction (SII). Ipsilaterally deactivated areas were the caudal and cranial part of the medial occipital gyrus (V2, V3, V4, V5). Contralaterally deactivated areas were the lingual gyrus, inferior occipital gyrus (V2, V3) and fusiform gyrus. On the basis of these data, it was postulated that, during caloric stimulation, extravestibular reaction also occurs, which corresponds to the subjective feeling of heat and pain. The deactivation of the occipital cortex due to an extravestibular effect was demonstrated. This is the first observation to suggest the possibility of nociceptivevisual interaction.
Die Verfasser berichten Über die Ergebnisse der prospektiven Untersuchungen von 40 Kranken mit Neuronitis vestibularis. Auf Grund des SchwindelgefÜhls, des Spontannystagmus und der kalorischen Reaktion stellen sie fest, dass der Heilungsprozess, d.h. die Kompensation, verhÄltnismÄssig lange dauerte und fiuktuierend war. Sie empfehlen solche Rechenverfahren, die bei der Computerbearbeitung der otoneurologischen Befunde behilflich sind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.