Neuronal cell death, abnormal protein aggregates, and cytoplasmic vacuolization are major pathologies observed in many neurodegenerative disorders such as the polyglutamine (polyQ) diseases, prion disease, Alzheimer disease, and the Lewy body diseases, suggesting common mechanisms underlying neurodegeneration. Here, we have identified VCP/ p97, a member of the AAA+ family of ATPase proteins, as a polyQ-interacting protein in vitro and in vivo, and report on its characterization. Endogenous VCP co-localized with expanded polyQ (ex-polyQ) aggregates in cultured cells expressing ex-polyQ, with nuclear inclusions in Huntington disease patient brains, and with Lewy bodies in patient samples. Moreover, the expression of VCP mutants with mutations in the 2nd ATP binding domain created cytoplasmic vacuoles, followed by cell death. Very similar vacuoles were also induced by ex-polyQ expression or proteasome inhibitor treatment. These results suggest that VCP functions not only as a recognition factor for abnormally folded proteins but also as a pathological effector for several neurodegenerative phenotypes. VCP may thus be an ideal molecular target for the treatment of neurodegenerative disorders. Cell Death and Differentiation (2001) 8, 977 ± 984.
Mammalian preimplantation embryos are sensitive to maternal and direct heat stress. However, the mechanisms by which heat stress affects early embryonic development in vivo or in vitro are unknown. This study examined whether heat-stress-induced loss of developmental competence in mouse embryos was mediated by physiological changes in the maternal environment or by high temperatures alone. After fertilization, zygotes at the same stage were heat-stressed at 39.5 degrees C for 12 h either maternally (measured by maternal rectal temperature) or directly in culture. Zygotes in each group were cultured at 37.5 degrees C for a further 84 h to assess their developmental ability. Neither type of heat stress affected the first cleavage rate. However, the proportion of embryos that developed to morulae or blastocysts was significantly lower in the maternally heat-stressed group, but not in the directly heat-stressed group. Moreover, maternal heat stress significantly reduced intracellular glutathione concentrations and enhanced hydrogen peroxide concentrations in both zygotes and two-cell embryos that were recovered immediately after heat stress or 12 h later, respectively. In contrast, direct heat stress had little effect on concentrations of glutathione or hydrogen peroxide in cultured early embryos. These results demonstrate that maternal heat stress at the zygote stage reduces the developmental ability of mouse embryos via physiological changes in the maternal environment that lead to an increase in intracellular oxidative stress on the embryo.
Background: A novel class of inherited human neurodegenerations is now known to be caused by expanded CAG repeats encoding polyglutamines. Polyglutamine-containing protein fragments have been shown to accumulate as aggregates in the nucleus and in the cytoplasm, and to induce cell death when expressed in cultured cells, leading to the proposal that polyglutamine aggregation is an important step in the pathogenesis. Supporting this, nuclear inclusions containing expanded polyglutamines have been identified in neurones from the brains of patients and in neurones from transgenic mouse models of this class of neural disorders.
Abstract. This study examined the association between redox status in the oviduct and early embryonic death in heat-stressed mice. In Experiment 1, non-pregnant mice were heat-stressed at 35 C with 60% relative humidity for 12, 24, or 36 h, and the maternal redox status was verified by measuring the levels of reactive oxygen species (ROS) and free radical scavenging activity (FRSA) in the oviduct, and thiobarbituric acid reactive substances (TBARS) and glutathione peroxidase (GSHPx) activity in the liver. In Experiment 2, zygotes were collected from mice heat-stressed for 12 h on the day of pregnancy, and their developmental abilities were assessed in vitro, along with the intensity of DNA damage at the 2-cell stage. The TBARS value and GSH-Px activity in the liver, and ROS level in the oviduct were significantly higher in heat-stressed mice, and this increase appeared to depend on the duration of the heat stress. Maternal heat stress significantly reduced the percentage of zygotes that developed to the morula and blastocyst and the total cell number in the blastocyst. In addition, DNA damage at the 2-cell stage was significantly higher in maternally heat-stressed embryos. These results suggest that heat stress induces systemic changes in redox status in the maternal body, and the resultant increase in oxidative stress in the oviduct is possibly involved in heat stress-induced early embryonic death . Key words: Early embryo death, Heat stress, Oxidative stress, Reactive oxygen species (J. Reprod. Dev. 51: [281][282][283][284][285][286][287] 2005) aternal hyperthermia during early pregnancy in heat-stressed animals often leads to preimplantation embryonic death. Although this is a common phenomenon in many mammalian species, e.g., in cattle [1], pigs [2], sheep [3], rats [4] and mice [5], the syndrome is more pronounced in high performance lactating cows because of their elevated metabolic heat production [6,7]. Hyperthermia-induced early embryonic death is generally ascribed to the high susceptibility of early embryos to elevated maternal body temperature [8,9]. However, recent studies have indicated that the disruption of embryonic development in heatstressed animals is connected with heat-stressassociated changes in the maternal body. Rivera and Hansen [10] have shown that in vitro exposure of bovine zygotes to a fluctuating high temperature (39.5-40.5 C), that carefully mimicked the rectal temperature of heat-stressed hyperthermic cows f or 2 4 h , d i d n ot c om p rom i s e s u bs e q ue nt development to the blastocyst stage. Similarly, we observed that the deleterious effects of maternal heat stress on mouse zygotes were not related to high body temperature alone, but were mediated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.