SummaryMesenchymal stem cells derived from the human umbilical cord matrix (hUCMSCs) have great potential for therapeutic use for multiple diseases. The strategy that uses therapeutic gene-transfected hUCMSCs as cellular vehicles for targeted biologic agent delivery has solved the problem of short half life or excessive toxicity of biological agent(s) in vivo. Interferon-β (IFN-β) has demonstrated a potent anti-tumor effect on many types of cancer cell lines in vitro. The aim of this study was to determine the anti-cancer effect of IFN-β gene-transfected hUCMSCs (IFN-β-hUCMSCs) on cells derived from bronchioloalveolar carcinoma, a subset of lung adenocarcinoma that is difficult to treat. The co-culture of a small number of IFN-β-hUCMSCs with the human bronchioloalveolar carcinoma cell lines H358 or SW1573 significantly inhibited growth of both types of carcinoma cell lines. The culture medium conditioned by these cells also significantly attenuated the growth of both carcinoma cells, but this attenuation was abolished by adding anti-IFN-β antibody. Finally, systemic administration of IFN-β-hUCMSCs through the tail vein markedly attenuated growth of orthotopic H358 bronchioloalveolar carcinoma xenografts in SCID mice by increasing apoptosis. These results clearly indicate that IFN-β-hUCMSCs caused cell death of bronchioloalveolar carcinoma cells through IFN-β production, thereby attenuating tumor growth in vivo. These results indicate that IFN-β-hUCMSCs are a powerful anti-cancer cytotherapeutic tool for bronchioloalveolar carcinoma.
The endogenous angiotensin II (Ang II) type 2 receptor (AT2) has been shown to mediate apoptosis in cardiovascular tissues. Thus, the aim of this study was to explore the anti-cancer effect of AT2 over-expression on lung adenocarcinoma cells in vitro using adenoviral (Ad), FuGENE, and nanoparticle vectors. All three gene transfection methods efficiently transfected AT2 cDNA into lung cancer cells but caused minimal gene transfection in normal lung epithelial cells. Ad-AT2 significantly attenuated multiple human lung cancer cell growth (A549 and H358) as compared to the control viral vector, Ad-LacZ, when cell viability was examined by direct cell count. Examination of annexin V by flow cytometry revealed the activation of the apoptotic pathway via AT2 over-expression. Western Blot analysis confirmed the activation of caspase-3. Similarly, poly (lactide-co-glycolic acid) (PLGA) biodegradable nanoparticles encapsulated AT2 plasmid DNA were shown to be effectively taken up into the lung cancer cell. Nanoparticle-based AT2 gene transfection markedly increased AT2 expression and resultant cell death in A549 cells. These results indicate that AT2 over-expression effectively attenuates growth of lung adenocarcinoma cells through intrinsic apoptosis. Our results also suggest that PLGA nanoparticles can be used as an efficient gene delivery vector for lung adenocarcinoma targeted therapy.
Abstract. This study examined the association between redox status in the oviduct and early embryonic death in heat-stressed mice. In Experiment 1, non-pregnant mice were heat-stressed at 35 C with 60% relative humidity for 12, 24, or 36 h, and the maternal redox status was verified by measuring the levels of reactive oxygen species (ROS) and free radical scavenging activity (FRSA) in the oviduct, and thiobarbituric acid reactive substances (TBARS) and glutathione peroxidase (GSHPx) activity in the liver. In Experiment 2, zygotes were collected from mice heat-stressed for 12 h on the day of pregnancy, and their developmental abilities were assessed in vitro, along with the intensity of DNA damage at the 2-cell stage. The TBARS value and GSH-Px activity in the liver, and ROS level in the oviduct were significantly higher in heat-stressed mice, and this increase appeared to depend on the duration of the heat stress. Maternal heat stress significantly reduced the percentage of zygotes that developed to the morula and blastocyst and the total cell number in the blastocyst. In addition, DNA damage at the 2-cell stage was significantly higher in maternally heat-stressed embryos. These results suggest that heat stress induces systemic changes in redox status in the maternal body, and the resultant increase in oxidative stress in the oviduct is possibly involved in heat stress-induced early embryonic death . Key words: Early embryo death, Heat stress, Oxidative stress, Reactive oxygen species (J. Reprod. Dev. 51: [281][282][283][284][285][286][287] 2005) aternal hyperthermia during early pregnancy in heat-stressed animals often leads to preimplantation embryonic death. Although this is a common phenomenon in many mammalian species, e.g., in cattle [1], pigs [2], sheep [3], rats [4] and mice [5], the syndrome is more pronounced in high performance lactating cows because of their elevated metabolic heat production [6,7]. Hyperthermia-induced early embryonic death is generally ascribed to the high susceptibility of early embryos to elevated maternal body temperature [8,9]. However, recent studies have indicated that the disruption of embryonic development in heatstressed animals is connected with heat-stressassociated changes in the maternal body. Rivera and Hansen [10] have shown that in vitro exposure of bovine zygotes to a fluctuating high temperature (39.5-40.5 C), that carefully mimicked the rectal temperature of heat-stressed hyperthermic cows f or 2 4 h , d i d n ot c om p rom i s e s u bs e q ue nt development to the blastocyst stage. Similarly, we observed that the deleterious effects of maternal heat stress on mouse zygotes were not related to high body temperature alone, but were mediated
: Maternal hyperthermia induces early embryonic death via increased oxidative stress to the embryo. In this study, we examined whether melatonin administered to heat‐stressed pregnant mice would reduce hyperthermia‐induced embryonic death. Mice were heat stressed (12 hr at 35°C, 60% relative humidity) on the day of mating and melatonin (3 mg/kg body weight) was injected subcutaneously every 2 hr during heat exposure. Thereafter, zygotes were collected, and in vitro developmental ability and intracellular glutathione (GSH) content were assessed. In addition, reactive oxygen species (ROS) levels and free radical scavenging activity (FRSA) in the oviduct as well as lipid peroxidation in the liver were measured. Melatonin administration was associated with a tendency for higher intracellular GSH content in zygotes (1.67 pmol/zygote) and a significantly higher percentage of embryos that developed to the morula or blastocyst stage (47.91%; P < 0.01) compared with the parameters in heat‐stressed mice that were administered a placebo (1.48 pmol GSH/zygote and 14.78% development). Lipid peroxidation levels in the liver and ROS levels in the oviduct were the same in melatonin‐treated stressed mice and the controls, while these parameters were significantly higher in heat‐stressed mice that were not treated with melatonin. Furthermore, FRSA in the oviduct was significantly (P < 0.05) higher in the melatonin‐treated mice than in the controls. These results suggest that administration of melatonin to heat‐stressed mice alleviates hyperthermia‐induced early embryonic death and that this is accomplished in part by maintaining a neutral redox status within the mother.
Mammalian preimplantation embryos are vulnerable to heat stress. However, the mechanisms by which maternal heat stress compromises embryonic development are unclear. We hypothesized that the loss of developmental competence in maternally heat-stressed embryos results from enhanced oxidative stress in the oviducts. In experiment 1, oviducts and zygotes were collected from mice that were heat-stressed at 35 degrees C and 60% relative humidity for 12 h on the day of pregnancy as well as from control mice. The zygotes were cultured for 84 h to assess their development, and the H(2)O(2) level, glutathione concentration, and free radical scavenging activity (FRSA) were measured in the oviduct. In experiment 2, zygotes were cultured for 22 h to reach the late G(2) phase in the 2-cell stage, and Cdc2 activity was assessed using immunoblotting. A high percentage (87.6%) of control embryos developed to morulae or blastocysts, whereas the majority (67.4%) of the heat-stressed group arrested at the 2-cell stage. Although heat stress did not alter the FRSA or glutathione concentration in the oviducts, the H(2)O(2) level (P < 0.01) and its ratio to the FRSA (P < 0.05) significantly increased in the heat-stressed group. The Cdc2 activation at the 2-cell stage, as shown by the ratio of the dephosphorylated form to the phosphorylated form, was evident in control embryos but absent in heat-stressed embryos, and the level was similar to that in embryos blocked at the 2-cell stage (positive control). These results indicate that maternal heat stress enhances oxidative stress in the oviducts and that loss of developmental competence in maternally heat-stressed embryos correlates with a defect in Cdc2 activity at the 2-cell stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.