Several recent studies have suggested that the reactive oxygen species (ROS) generated from mitochondria contribute to genomic instability after exposure of the cells to ionizing radiation, but the mechanism of this process is not yet fully understood. We examined the hypothesis that irradiation induces mitochondrial dysfunction to cause persistent oxidative stress, which contributes to genomic instability. After the exposure of cells to 5 Gy gamma-ray irradiation, we found that the irradiation induced the following changes in a clear pattern of time courses. First, a robust increase of intracellular ROS levels occurred within minutes, but the intracellular ROS disappeared within 30 minutes. Then the mitochondrial dysfunction was detected at 12 hours after irradiation, as indicated by the decreased activity of NADH dehydrogenase (Complex I), the most important enzyme in regulating the release of ROS from the mitochondrial electron transport chain (ETC). Finally, a significant increase of ROS levels in the mitochondria and the oxidation of mitochondrial DNA were observed in cells at 24 hours or later after irradiation.Although further experiments are required, results in this study support the hypothesis that mitochondrial dysfunction causes persistent oxidative stress that may contribute to promote radiation-induced genomic instability.2
Placental extracts have been reported to have anti-oxidative and anti-inflammatory activities. Because there is increasing evidence that ionizing radiation induces the release of reactive oxygen species (ROS) and inflammatory cytokines, we examined the protective effects of a placental extract against radiation injury. C57BL/6 mice were exposed to 1 Gy of γ-ray radiation every day for 5 days, and placental extract (1 mg/day) was administrated orally soon after each exposure. At 2 days after the last irradiation, mice were euthanized to examine the numbers, colony-forming capacity, and DNA damage of stem/progenitor cells in the peripheral blood and bone marrow. To understand the related mechanisms, we also measured the levels of intracellular and mitochondrial ROS, and 8-OHdG in the plasma and urine, and IL-6 and TNF-α in the plasma. Compared with the placebo treatment, oral administration of placental extract significantly increased the number and colony-forming capacity, but decreased the DNA damage of bone marrow stem/progenitor cells. However, neither the levels of intracellular and mitochondrial ROS in bone marrow cells, nor the levels of 8-OHdG in the urine and plasma significantly differed between groups. Interestingly, in comparison with the placebo treatment, placental extract significantly decreased the levels of the inflammatory cytokines IL-6 and TNF-α in the plasma. Placental extract significantly attenuated the acute radiation injury to bone marrow-derived stem/progenitor cells, and this protection is likely to be related to the anti-inflammatory activity of the placental extract.
The ex vivo expansion of stem cells under low physiological oxygen (O2 ) conditions has been demonstrated to improve the stemness and genomic stability of the cells. We investigated whether low-oxygen culture would be beneficial for the culture of induced pluripotent stem (iPS) cells. Two human iPS cell lines (201B7 and 253G1) were used for the experiments. Cells expanded from a single colony of each cell line were initiated for culture in 2.5% O2 , 5% O2 , or 20% O2 and maintained for 2 months in parallel. The levels of intracellular and mitochondrial reactive oxygen species did not differ between the cells cultured under different conditions. More colonies of uniformly smaller size were observed at 2.5% and 5% O2 than at 20% O2 . All of these iPS colonies that expanded under the various oxygen conditions stained positively for Oct3/4, Nanog, SSEA-4, and ALP. However, Western blot analysis showed that the iPS cells cultured at 2.5% and 5% O2 expressed significantly more Nanog but less 53BP1 than those cultured at 20% O2 . Data from an array CGH showed no significant chromosomal abnormalities, although some genes involved in cellular and metabolic processes were amplified in the low oxygen culture, particularly at 2.5% O2 . Our data suggest that low physiological oxygen culture could improve the stemness and quality of iPS cells, a result that might be associated with the amplification of genes involved in metabolic and cellular processes. Long-term culture will be necessary to confirm whether low physiological oxygen levels also improve genomic stability.
Nicaraven, a chemically synthesized hydroxyl radical-specific scavenger, has been demonstrated to protect against ischemia-reperfusion injury in various organs. We investigated whether nicaraven can attenuate radiation-induced injury in hematopoietic stem/progenitor cells, which is the conmen complication of radiotherapy and one of the major causes of death in sub-acute phase after accidental exposure to high dose radiation. C57BL/6 mice were exposed to 1 Gy γ-ray radiation daily for 5 days in succession (a total of 5 Gy), and given nicaraven or a placebo after each exposure. The mice were sacrificed 2 days after the last radiation treatment, and the protective effects and relevant mechanisms of nicaraven in hematopoietic stem/progenitor cells with radiation-induced damage were investigated by ex vivo examination. We found that post-radiation administration of nicaraven significantly increased the number, improved the colony-forming capacity, and decreased the DNA damage of hematopoietic stem/progenitor cells. The urinary levels of 8-oxo-2′-deoxyguanosine, a marker of DNA oxidation, were significantly lower in mice that were given nicaraven compared with those that received a placebo treatment, although the levels of intracellular and mitochondrial reactive oxygen species in the bone marrow cells did not differ significantly between the two groups. Interestingly, compared with the placebo treatment, the administration of nicaraven significantly decreased the levels of the inflammatory cytokines IL-6 and TNF-α in the plasma of mice. Our data suggest that nicaraven effectively diminished the effects of radiation-induced injury in hematopoietic stem/progenitor cells, which is likely associated with the anti-oxidative and anti-inflammatory properties of this compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.